


© Crown Copyright/database right 2007. An Ordnance Survey/EDINA/ESRI/EarthSat/NASA supplied service.

### KEY

- A Cambridge University Hospitals NHS Foundation Trust
- B Brighton & Sussex University Hospitals NHS Trust
- C Cardiff & Vale NHS Trust
- D Central Manchester & Manchester Children's University Hospitals NHS Trust
- E Great Ormond Street Hospital for Children NHS Trust
- F Guy's & St. Thomas' NHS Foundation Trust
- G Hull & East Yorkshire Hospitals NHS Trust
- H King's College Hospital NHS Trust
- Leeds Teaching Hospitals NHS Trust
- J The Lewisham Hospital NHS Trust
- K Newcastle upon Tyne Hospitals NHS Foundation Trust
  - K1 Newcastle General Hospital
  - K2 Newcastle Freeman Hospital
  - K3 Newcastle Royal Victoria Infirmary
- L University Hospital of North Staffordshire NHS Trust
- M Nottingham University Hospitals NHS Trust
- N Oxford Radcliffe Hospitals NHS Trust
- O Royal Brompton & Harefield NHS Trust
- P Royal Liverpool Children's NHS Trust
- **Q** Sheffield Children's NHS Foundation Trust
  - Q1 Sheffield Children's Hospital (NICU)
  - Q2 Sheffield Children's Hospital (PICU)
- **R** Southampton University Hospitals NHS Trust
- **S** South Tees Hospitals NHS Trust
- T St. George's Healthcare NHS Trust
- U St. Mary's NHS Trust
- V Birmingham Children's Hospital NHS Trust
- W United Bristol Healthcare NHS Trust
- X University Hospitals of Leicester NHS Trust
  - X1 Leicester Glenfield Hospital
  - X2 Leicester Royal Infirmary
- Y NHS Lothian University Hospitals Division

Published in the UK by the Paediatric Intensive Care Audit Network (PICANet). This work is copyright. Apart from any use as permitted under the Copyright, Designs and Patents Act 1988, no part may be reproduced by any process without permission from PICANet.

Requests and enquiries concerning reproduction rights should be directed to PICANet at:

PICANet Paediatric Epidemiology Group Centre for Epidemiology and Biostatistics The Leeds Institute of Genetics, Health and Therapeutics University of Leeds 30 Hyde Terrace Leeds LS2 9LN

0113 343 4856

picanet@leeds.ac.uk

In all cases PICANet must be acknowledged as the source when reproducing or quoting any part of this publication. Please use the following format when citing this report:

Paediatric Intensive Care Audit Network National Report 2004 - 2006 (published June 2007): Universities of Leeds and Leicester. ISBN 978 0 85316 264 3.



# National Report of the

## Paediatric Intensive Care Audit Network

January 2004 – December 2006

ISBN 978 0 85316 264 3

### CONTENTS

| 1          | CONTENTS                                                       | 4  |
|------------|----------------------------------------------------------------|----|
| 2          | ACKNOWLEDGEMENTS                                               | 10 |
| 3          | FOREWORD                                                       | 11 |
| 4          | EXECUTIVE SUMMARY                                              | 12 |
| 5          | RECOMMENDATIONS                                                | 14 |
| 6          | BACKGROUND                                                     | 15 |
| 7          | INTRODUCTION AND AIMS                                          | 16 |
| 8          | THE PICANet DATASET                                            | 17 |
| 8.1        | Development and description of the current dataset             | 17 |
| 8.2        | The Paediatric Critical Care Minimum Dataset                   |    |
| 8.3        | Retrievals dataset                                             | 17 |
| 8.4        | Data collection and validation                                 | 18 |
| 8.5        | Clinical coding                                                | 18 |
| 8.6        | Confidentiality                                                | 18 |
| 8.7        | Data transmission                                              | 19 |
| 9          | DATASET DEFINITIONS FOR THIS REPORT                            | 20 |
| 10         | DESCRIPTION OF TABLES AND FIGURES                              | 21 |
| 11         | ADMISSION DATA                                                 | 22 |
| 11.1       | Admission numbers by age, sex, month and year of admission,    |    |
|            | NHS trust and diagnostic group                                 | 22 |
| 11.2       | Admissions by Strategic Health Authority (SHA) /               |    |
|            | Health Board (HB)                                              | 22 |
| 11.3       | Admissions by mortality risk category                          |    |
| 11.4       | Admissions by admission type                                   | 22 |
| 11.5       | Admissions by primary diagnostic group                         | 23 |
| 11.6       | References                                                     |    |
| 12         | RETRIEVAL DATA                                                 | 24 |
| 13         | INTERVENTION DATA                                              | 25 |
| 14         | BED ACTIVITY AND LENGTH OF STAY                                | 26 |
| 15         | OUTCOME DATA                                                   | 27 |
| 15.1       | References                                                     | 27 |
| 16         | DATA ON INDIVIDUAL CHILDREN                                    | 28 |
| 17         | PREVALENCE FOR ADMISSION                                       | 29 |
| 18         | CHILDREN RECEIVING CARE IN ADULT INTENSIVE                     |    |
|            | CARE UNITS                                                     | 30 |
| 19         | DATA QUALITY                                                   | 31 |
| 19.1       | Data quality assurance processes                               | 31 |
| Table DQ1  | Data completeness                                              | 32 |
| Figure DQ1 | Percentage of exception or blank values in the PICANet dataset | 33 |
| Figure DQ2 | Data completeness for 30-day follow-up information             | 33 |
| Table DQ2  | Data completeness by year (all variables)                      | 34 |
| Table DQ3  | Data completeness by PICU                                      | 35 |
| Table DQ4  | Data completeness for NHS number by NHS trust                  | 35 |
| Figure DQ3 | Data completeness for NHS number                               | 36 |
| 20         | A CLINICIAN'S COMMENTARY                                       | 37 |
| 20.1       | Inter unit comparison                                          | 38 |
| 20.2       | Equity of provision                                            | 38 |
| 20.3       | Research                                                       | 39 |
| 20.4       | References                                                     | 39 |

| 21          | THE PAEDIATRIC CRITICAL CARE MINIMUM DATASET (PCCM                  | DS), |
|-------------|---------------------------------------------------------------------|------|
|             | HEALTHCARE RESOURCE GROUPS (HRGS) AND PAYMENT B                     | Υ    |
|             | RESULTS (PBR)                                                       |      |
| 21.1        | What were the findings of the observational study and the costings  |      |
|             | exercise?                                                           | . 41 |
| Figure PCCM |                                                                     |      |
|             | Breakdown of costs for each PICU                                    |      |
| 21.2        | What system of HRGs was chosen?                                     |      |
| Table P1    | Breakdown of cases over 3 month period, according to HRG level.     |      |
| 21.3        | How many HRGs will be allocated to a patient?                       |      |
| 21.4        | What about patient transport services?                              | . 44 |
| 21.5        | How will the Paediatric Critical Care Minimum Dataset               |      |
|             | be collected?                                                       | . 44 |
| 21.6        | Should a pre-term neonate looked after in PICU or a ward area       |      |
|             | have the Neonatal Critical Care Minimum Dataset collected rather    |      |
|             | than PCCMDS?                                                        |      |
| 21.7        | What are the key milestones over the next few years?                |      |
| 21.8        | Will we be stuck with the current HRGs or can they be modified?     | . 45 |
| 21.9        | How else can we use the PCCMDS data?                                | . 45 |
| 21.10       | Further information                                                 | . 45 |
| 22          | DEVELOPMENT OF THE RETRIEVALS DATASET                               | . 46 |
| 22.1        | Example                                                             | . 46 |
| 22.2        | Forms completed                                                     | . 47 |
| Figure RET1 | Referral, retrieval and PICU admission, the data collection pathway |      |
| 23          | PICU HEALTH INFORMATICS                                             | . 49 |
| 23.1        | National PICS Health Informatics Group: News update                 | . 49 |
| 23.2        | PICU Clinical Information Systems Survey                            | . 49 |
| 23.3        | SNOMED PICU Subset Development Project                              | . 49 |
| 23.4        | What is SNOMED-CT?                                                  | . 49 |
| 23.5        | What is a SNOMED subset?                                            |      |
| 23.6        | Why develop a subset?                                               |      |
| 24          | UK PICU STAFFING STUDY                                              | . 51 |
| 24.1        | Background                                                          | . 51 |
| 24.2        | The 3 different phases of the study                                 | . 51 |
| 24.3        | Progress phase 2                                                    |      |
| 24.4        | Progress phase 3                                                    | . 52 |
| 24.5        | Outstanding work                                                    |      |
| 25          | SPECIALISED COMMISSIONERS PERSPECTIVE ON PICANet                    | . 54 |
| 25.1        | Introduction                                                        | . 54 |
| 25.2        | The Context of Commissioning Paediatric Intensive Care              | . 54 |
| 25.3        | Commissioners views on the usefulness of PICANet                    | . 55 |
| 25.4        | Commissioners thoughts on how PICANet could be utilised more        |      |
|             | efficiently and developed in the future                             |      |
| 25.5        | Access to data                                                      |      |
| 25.6        | Quarterly Reporting                                                 |      |
| 25.7        | Strategic planning from a National perspective                      | . 58 |
| 25.8        | Commissioning the patient pathway                                   |      |
| 25.9        | Integration of PICANet information with Connecting for Health       | . 59 |
| 25.10       | Capturing data on PIC Transport                                     |      |
| 25.11       | Conclusions                                                         | . 59 |
| 25.12       | Recommendations                                                     | . 60 |
| 25.13       | References                                                          | . 60 |

| 26                  | USES AND DISSEMINATION OF PICANet DATA                                                                                               |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| 27                  | TABLES AND FIGURES                                                                                                                   |  |
| Table 1             | Admissions by age and sex, 2004 - 2006                                                                                               |  |
| Figure 1            | Admissions by age and sex, 2004 - 2006                                                                                               |  |
| Table 2             | Admissions by age (<1) and sex, 2004 - 2006                                                                                          |  |
| Figure 2<br>Table 3 | Admissions by age (<1) and sex, 2004 - 2006                                                                                          |  |
| Table 3             | Admissions by age by NHS trust, 2004 - 2006                                                                                          |  |
|                     | Admissions by age (<1) by NHS trust, 2004 - 2006                                                                                     |  |
| Table 5<br>Table 6  |                                                                                                                                      |  |
|                     | Admissions by month and age, 2004 - 2006                                                                                             |  |
| Figure 6<br>Table 7 | Admissions by month and age, 2004 - 2006                                                                                             |  |
| Figure 7            | Admissions by month and primary diagnostic group, 2004 - 2006 68<br>Admissions by month and primary diagnostic group, 2004 - 2006 68 |  |
| Table 8             | Respiratory admissions by month and age, 2004 - 2006                                                                                 |  |
| Figure 8            | Respiratory admissions by month and age, 2004 - 2006                                                                                 |  |
| Table 9             | Admissions by month by NHS trust, 2004 - 2006                                                                                        |  |
| Table 10a           | Admissions by 2004 SHA / HB and year, 2004 - 2006                                                                                    |  |
| Table 10b           | Admissions by 2004 SHA / HB and year, 2004 - 2006                                                                                    |  |
| Figure 10a          | Map showing 2004 SHA / HB boundaries                                                                                                 |  |
| Figure 10b          | Map showing 2004 SHA / HB boundaries                                                                                                 |  |
| Figure 10c          | Map showing 2006 SHA / HB / PCO boundaries                                                                                           |  |
| Table 11            | Admissions by mortality risk group by NHS trust, 2004 - 2006                                                                         |  |
| Table 12            | Admissions by admission type and age, 2004 - 2006                                                                                    |  |
| Figure 12           | Admissions by admission type, 2004 - 2006                                                                                            |  |
| Table 13            | Admissions by admission type by NHS trust, 2004 - 2006                                                                               |  |
| Table 14            | Admissions by source of admission (admission type 'unplanned -                                                                       |  |
|                     | other') by NHS trust, 2004 - 2006                                                                                                    |  |
| Table 15            | Admissions by care area admitted from (admission type 'unplanned -                                                                   |  |
|                     | other'; admitted from hospital) by NHS trust, 2004 - 2006                                                                            |  |
| Table 16            | Admissions by primary diagnostic group and age, 2004 - 2006 81                                                                       |  |
| Figure 16           | Admissions by primary diagnostic group, 2004 - 2006                                                                                  |  |
| Table 17            | Admissions by primary diagnostic group and                                                                                           |  |
|                     | age (16+), 2004 - 2006                                                                                                               |  |
| Figure 17           | Admissions by primary diagnostic group (16+), 2004 - 2006                                                                            |  |
| Table 18            | Admissions by primary diagnostic group by NHS trust, 2004 - 2006 83                                                                  |  |
| Table 19            | Admissions by primary diagnostic group (planned - following surgery)                                                                 |  |
|                     | by NHS trust, 2004 - 2006                                                                                                            |  |
| Table 20            | Admissions by primary diagnostic group (unplanned - following                                                                        |  |
|                     | surgery) by NHS trust, 2004 - 2006                                                                                                   |  |
| Table 21            | Admissions by primary diagnostic group (planned - other)                                                                             |  |
|                     | by NHS trust, 2004 - 2006                                                                                                            |  |
| Table 22            | Admissions by primary diagnostic group (unplanned - other)                                                                           |  |
|                     | by NHS trust, 2004 - 2006                                                                                                            |  |
| Table 23            | Most commonly returned Read Codes for primary reason for                                                                             |  |
| Table 24            | admission, 2004 - 2006                                                                                                               |  |
| Table 24            | Most commonly returned Read Codes for primary reason for                                                                             |  |
| Table 25            | 'unplanned - following surgery' admissions, 2004 - 2006                                                                              |  |
| I ADIE 23           | Most commonly returned Read Codes for primary reason for<br>'unplanned - other' admission, 2004 - 2006                               |  |
| Table 26            | Retrievals by team type and age, 2004 - 2006                                                                                         |  |
| Figure 26           | Retrievals by team type, 2004 - 2006                                                                                                 |  |
| i iguie 20          | 1000 - 2000 - 2000 - 2000 - 31                                                                                                       |  |

| Table 27               | 'Non-specialist team' retrievals by diagnostic group and                                                              |
|------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                        | age, 2004 - 2006                                                                                                      |
| Table 28               | Retrievals by retrieval type by NHS trust, 2004 - 2006                                                                |
| Table 29               | Interventions received by NHS trust, 2004 - 2006                                                                      |
| Table 30               | Admissions by ventilation status and age, 2004 - 2006                                                                 |
| Table 31               | Admissions by ventilation status by NHS trust, 2004 - 2006                                                            |
| Figure 31a             | Percentage of children receiving invasive ventilation                                                                 |
| Figure 31b             | Percentage of children receiving invasive ventilation                                                                 |
| Figure 31c             | Percentage of children receiving invasive ventilation                                                                 |
| Table 32               | Bed days by age and sex, 2004 - 2006 100                                                                              |
| Figure 32              | Bed days by age and sex, 2004 - 2006 100                                                                              |
| Table 33               | Bed days by age by NHS trust, 2004 - 2006 101                                                                         |
| Table 34               | Bed census by month, 2004 - 2006 102                                                                                  |
| Figure 34              | Bed census by month, 2004 - 2006 102                                                                                  |
| Table 35               | Bed census by NHS trust, 2004 - 2006                                                                                  |
| Figure 35a             | Bed census by NHS trust, 2004                                                                                         |
| Figure 35b             | Bed census by NHS trust, 2005                                                                                         |
| Figure 35c<br>Table 36 | Bed census by NHS trust, 2006                                                                                         |
| Figure 36              | Bed activity by month, 2004 - 2006                                                                                    |
| Table 37               | Bed activity by NHS trust, 2004 - 2006                                                                                |
| Figure 37a             | Bed activity by NHS trust, 2004 2000 100<br>105                                                                       |
| Figure 37b             | Bed activity by NHS trust, 2005                                                                                       |
| Figure 37c             | Bed activity by NHS trust, 2006                                                                                       |
| Table 38               | Length of stay by age and NHS trust, 2004 - 2006 106                                                                  |
| Table 39               | Length of stay by primary diagnostic group and                                                                        |
|                        | NHS trust, 2004 - 2006                                                                                                |
| Table 40               | Admissions by length of stay by NHS trust, 2004 - 2006 108                                                            |
| Table 41               | Admissions by unit discharge status and age, 2004 - 2006 109                                                          |
| Table 42               | Admissions by unit discharge status and age (<1), 2004 - 2006 110                                                     |
| Table 43               | Admissions by unit discharge status and sex, 2004 - 2006 111                                                          |
| Table 44               | Admissions by unit discharge status and                                                                               |
| Table 15               | sex (age <1), 2004 - 2006                                                                                             |
| Table 45<br>Table 46   | Admissions by unit discharge status by NHS trust, 2004 - 2006 113                                                     |
| Table 46               | Admissions by unit discharge destination and age, 2004 - 2006 114<br>Standardised mortality ratios by trust, 2004 115 |
| Figure 47a             | PICU Standardised mortality ratios by Irust, 2004                                                                     |
| rigure 47a             | with 99.9% control limits, 2004: unadjusted                                                                           |
| Figure 47b             | PICU Standardised mortality ratios by NHS trust                                                                       |
| 3                      | with 99.9% control limits, 2004: risk adjusted (PIM) 115                                                              |
| Table 48               | Standardised mortality ratios by trust, 2005                                                                          |
| Figure 48a             | PICU Standardised mortality ratios by NHS trust                                                                       |
|                        | with 99.9% control limits, 2005: unadjusted 116                                                                       |
| Figure 48b             | PICU Standardised mortality ratios by NHS trust                                                                       |
|                        | with 99.9% control limits, 2005: risk adjusted (PIM) 116                                                              |
| Table 49               | Standardised mortality ratios by trust, 2006 117                                                                      |
| Figure 49a             | PICU Standardised mortality ratios by NHS trust                                                                       |
| <b></b>                | with 99.9% control limits, 2006: unadjusted 117                                                                       |
| Figure 49b             | PICU Standardised mortality ratios by NHS trust                                                                       |
| Figure 49c             | with 99.9% control limits, 2006: risk adjusted (PIM) 117                                                              |
| rigule 490             | PICU Standardised mortality ratios by NHS trust<br>with 99.9% control limits, 2006: risk adjusted (PIM2)              |
|                        | when $33.370$ control limits, 2000. HSK dujusted (FIIVIZ)                                                             |

| Table 50      | Standardised mortality ratios combined by trust, 2004 - 2006 118                                |
|---------------|-------------------------------------------------------------------------------------------------|
| Figure 50a    | PICU Standardised mortality ratios by NHS trust                                                 |
|               | with 99.9% control limits, 2004 - 2006 combined: unadjusted 118                                 |
| Figure 50b    | PICU Standardised mortality ratios by NHS trust                                                 |
|               | with 99.9% control limits, 2004 - 2006                                                          |
| <b>E</b> : 50 | combined: risk adjusted (PIM)                                                                   |
| Figure 50c    | Risk adjusted mortality (PIM) by 2004 SHA in                                                    |
|               | England and Wales, 2004 - 2006                                                                  |
| Figure 50d    | Risk adjusted mortality (PIM) by 2006 SHA in                                                    |
|               | England and Wales, 2004 - 2006                                                                  |
| Table 51      | Admissions by follow-up status and age, 2004 - 2006                                             |
| Table 52      | Admissions by follow-up status and age (<1), 2004 - 2006 122                                    |
| Table 53      | Admissions by follow-up status and sex, 2004 - 2006                                             |
| Table 54      | Admissions by follow-up status and sex (age<1), 2004 - 2006 124                                 |
| Table 55      | Admissions by follow-up status by NHS trust, 2004 - 2006                                        |
| Table 56      | Re-Admissions by NHS trust and source of                                                        |
| Table 57      | previous admission, 2004 - 2006                                                                 |
| Table 57      | Number of admissions of individual children by                                                  |
| Table 50      | their NHS trust of first admission, 2004 - 2006                                                 |
| Table 58      | Number of individual children by NHS trust and diagnostic group of first admission, 2004 - 2006 |
| Table 59      | Individual child admissions by diagnostic group and                                             |
| Table 55      | readmission status, 2004 - 2006                                                                 |
| Table 60      | Age specific prevalence (per 100,000 per year) for                                              |
|               | admission to paediatric intensive care in England and                                           |
|               | Wales, 2004 - 2006                                                                              |
| Table 61a     | Age-sex standardised prevalence (per 100,000 per year) for                                      |
|               | admissions to paediatric intensive care by 2004 SHA in England and                              |
|               | Wales, 2004 - 2006                                                                              |
| Table 61b     | Age-sex standardised prevalence (per 100,000 per year) for                                      |
|               | admissions to paediatric intensive care by 2006 SHA in England and                              |
|               | Wales, 2004 - 2006                                                                              |
| Figure 61a    | Age-sex standardised prevalence (per 100,000 per year) for                                      |
| gale eta      | admissions to paediatric intensive care by 2004 SHA in England and                              |
|               | Wales, 2004 - 2006                                                                              |
| Figure 61b    | Age-sex standardised prevalence (per 100,000 per year) for                                      |
| C             | admissions to paediatric intensive care by 2006 SHA in England and                              |
|               | Wales, 2004 - 2006                                                                              |
| Figure 61c    | Age-sex standardised prevalence (per 100,000 per year) for                                      |
| -             | admissions to paediatric intensive care by 2006 PCO in England and                              |
|               | Wales, 2004 - 2006                                                                              |
| Table 62      | Admission of children to AICUs by age and sex, England, 2005 136                                |
| Table 63      | Admission of children to AICUs by age and                                                       |
|               | month of admission, England, 2005137                                                            |
| Table 64      | Admission of children to AICUs by age and                                                       |
|               | diagnostic group, England, 2005 138                                                             |
| Table 65      | Mortality of children admitted to AICUs by age                                                  |
|               | and diagnostic group, England, 2005 139                                                         |
| Table 66      | Discharge destination for children admitted                                                     |
|               | to AICUs, England, 2005 140                                                                     |
| Table 67      | Length of stay for surviving children admitted                                                  |
|               | to AICUs, England, 2005 141                                                                     |
|               |                                                                                                 |

| APPENDIX A | PARTICIPATING NHS TRUSTS AND                     |     |
|------------|--------------------------------------------------|-----|
|            | HOSPITAL CHARACTERISTICS                         | 142 |
| APPENDIX B | CLINICAL ADVISORY GROUP MEMBERSHIP               | 144 |
| APPENDIX C | STEERING GROUP MEMBERSHIP                        | 145 |
| APPENDIX D | DATA/INFORMATION REQUESTS RECEIVED TO DATE       | 147 |
| APPENDIX E | DATA COLLECTION FORM                             | 159 |
| APPENDIX F | INFORMATION LEAFLET                              | 163 |
| APPENDIX G | DATA VALIDATION REPORT                           | 164 |
| APPENDIX H | MONTHLY ADMISSIONS REPORT                        | 165 |
| APPENDIX I | ERROR RATE REPORT                                | 166 |
| APPENDIX J | POLICY FOR UNITS FALLING OUTSIDE THE             |     |
|            | CONTROL LIMITS                                   | 167 |
| J.1        | Background - mortality ratios and funnel plots   | 167 |
| J.2        | Data outliers                                    | 168 |
| J.3        | References                                       |     |
| APPENDIX K | PUBLICATIONS/PRESENTATIONS                       | 170 |
| K.1        | Presentations                                    | 170 |
| K.2        | Publications                                     |     |
| K.3        | Abstracts                                        | 173 |
| APPENDIX L | MEMBERSHIP OF THE PAEDIATRIC CRITICAL CARE       |     |
|            | EXPERT WORKING GROUP                             |     |
| APPENDIX M | MAPPING OF INTERVENTIONS TO DIFFERENT HRG LEVELS | 175 |
| APPENDIX N | PCCMDS: HIGH COST DRUGS WHICH ARE UNBUNDLED      | 178 |
| APPENDIX O | CHANGES TO THE STRUCTURE OF NHS PRIMARY CARE IN  |     |
|            | ENGLAND ON 1ST OCTOBER 2006                      |     |
| APPENDIX P | GLOSSARY                                         | 191 |

### 2 ACKNOWLEDGEMENTS

We are acutely aware that the success of this national clinical audit is highly dependent on the hard work and commitment of a large number of individuals working within the paediatric intensive care community. We are very grateful to all the audit clerks, secretaries, nurses and doctors who support and contribute to the Paediatric Intensive Care Audit Network (PICANet) from their own paediatric intensive care units (PICUs).

PICANet was established in collaboration with the Paediatric Intensive Care Society (PICS) and their active support continues to be a key component of our successful progress. The PICANet Steering Group (SG) has patient, academic, clinical, government and NHS members all of whom are thanked for their continuing assistance and advice. Members of our Clinical Advisory Group (CAG) are PICANet's formal interface with clinical care teams and their valuable support and contribution is gratefully acknowledged.

PICANet is funded by the Department of Health (DOH), Health Commission Wales Specialised Services, Royal Hospital for Sick Children, Edinburgh and the Pan Thames PICU Commissioning Consortium.

The organisation and functioning of PICANet is dependent on IT programming and development from Martin Perkins (University of Leicester), who we thank for his essential contributions.

### 3 FOREWORD

PICANet is showing the way both internationally in paediatric intensive care and, within the UK, to other areas of health care. This report demonstrates what can be achieved when clinicians and health services researchers work together. The combination of, on the one hand, clinical knowledge and experience, and on the other hand epidemiologists, statisticians and information technologists has resulted in the development of one of the finest clinical databases in the UK.

This report includes many examples of how such data can be used to shed light on the clinical management of severely ill children, the organisation of paediatric intensive care and the quality of care in intensive care units. Without such data, improvements in care would be seriously limited.

Increasingly there is a tendency to believe that routine data collected largely for administrative purposes are sufficient to audit care and provide a base for conducting research studies. Such a view ignores the shortcomings of such data. This report demonstrates why we need sophisticated, complex specialised databases. Rather than bemoan the fact, we should celebrate the multiple purposes and versatility of databases such as PICANet. It can underpin not only clinical and organisational audits, but also research, management and planning of services, individual patient care and the training needs of clinicians. These diverse uses are reflected in the contents of this report, such as contributions on the use of the database for commissioning care and developing financing mechanisms.

With increasing recognition by policy makers of the need for accurate information on the outcomes of care, PICANet can and should make a crucial and valued contribution over the coming years. Its quality is a tribute to the health services researchers and clinicians who have developed and lead this important work.

### Nick Black

Professor of Health Services Research London School of Hygiene & Tropical Medicine and Chair, PICANet Steering Group

11

### 4 EXECUTIVE SUMMARY

- PICANet is a clinical audit of paediatric intensive care (PIC) activity in England and Wales aiming to improve patient outcomes through providing information on delivery of care to critically ill children and an evidence base for clinical governance. PICANet was established in 2001 and functions in close collaboration with members of the PIC clinical community.
- 2 The specific objectives of PICANet are to identify best practice, monitor supply and demand, monitor and review outcomes of treatment episodes, facilitate strategic health care planning, quantify resource requirements and study the epidemiology of critical illness in children.
- 3 The national PICANet dataset continuously records details of admission, discharge, diagnoses (coded using Clinical Terms 3 (The Read Codes)), medical history, physiology, interventions and outcome. The outcome information is adjusted by 'case mix' to provide reliable evidence on patients' outcomes for clinicians, managers, patients. From 2006 the casemix adjustment tool is the updated Paediatric Index of Mortality 2.
- 4 Rigorous data quality procedures, incorporating iterative feedback loops between PICANet and the units, continue to ensure the dataset is of high quality.
- 5 PICANet are developing and expanding the core dataset in response to changes in the infrastructure and funding streams of the NHS. PICANet will provide the software for units to record the Paediatric Critical Care Minimum Dataset (PCCMDS) to support the Paediatric Critical Care Healthcare Resource Groups (HRGs) and Payment by Results (PbR). The flexibility for the collection of unit specific additional items will remain, whilst additional modules, such as that on retrievals, are under construction.
- 6 Data are presented on 42,221 paediatric intensive care admissions to 24 NHS trusts in England and Wales and the Royal Hospital for Sick Children, Edinburgh over the 3 year period January 2004 to December 2006. Detailed tables present information nationally, by Strategic Health Authority/Health Board (SHA), Primary Care Organisation (PCO) and named individual NHS trust. For the first time, data are available for downloading from the Web in spreadsheet format.
- 7 Children under 1 year comprise 48% of all admissions with an overall excess of boys (57%) compared to girls (43%). The majority of admissions (54%) are unplanned. Retrievals of 75% of children are by specialist paediatric intensive care teams.
- 8 Invasive ventilation procedures are recorded for 67% of admissions. This varies by trust between 6% and 95% over the three years.
- 9 A total of 242,997 bed days were delivered between 2004 and 2006. Length of stay has been calculated to the minute and presented as numbers of admissions by length of stay category ranging from less than an hour (0.8%) to 7 days or longer (16%). A 'bed census' has been calculated for children actually occupying a bed at 10 minutes past midnight on each day to provide a more accurate assessment of daily occupancy in the PIC service.

- 10 It is extremely rare for a child to die in paediatric intensive care and 95% are discharged alive. Risk-adjusted performance of all trusts fell within acceptable limits in each individual year and aggregated across the three year period.
- 11 The re-organisation of the NHS into Primary Care Organisations in 2006 is reflected in this report. Maps by SHA and PCO illustrate considerable variation in the geographical distribution of the volume of patients receiving paediatric intensive care and the percentage of children invasively ventilated.
- 12 PICANet acknowledge that data on status 30-day post discharge is incomplete for 57% of children discharged alive.
- 13 PICANet remains responsive to the needs of the clinical community and service providers and a number of new features are incorporated into this report. Clinicians and commissioners have contributed chapters on specific topics. These include a clinician's commentary, information on the PCCMDS, the retrievals dataset, health informatics, PICU staffing and a commissioner's perspective. These all add information on the context and environment within which PICANet operates.
- 14 Twelve recommendations arising from this report are outlined in the next section.

### 5 **RECOMMENDATIONS**

### **PICANet** recommend

- 1 That high quality clinical audit data on children receiving intensive care in England, Wales and Scotland should continue to be collected to optimise the delivery of care, to facilitate future planning, permit ongoing audit and describe the epidemiology of critically ill children.
- 2 Complete coverage of the UK to incorporate data from the PICU in Northern Ireland to enable the diversity of clinical practice to be characterised at a national level.
- 3 That optimal outcome measures are developed for paediatric intensive care to facilitate the improvement of professional practice and quality of PIC services.
- 4 That links with the clinical community and professional organisations, such as the Paediatric Intensive Care Society Study Group, continue to be strengthened and expanded via collaborative audit and research using the PICANet dataset.
- 5 That links with PIC commissioners are enhanced to facilitate the planning of PIC services.
- 6 The PICANet dataset should be used for future calibration of risk-adjustment algorithms in paediatric intensive care.
- 7 That Trusts provide support for the collection of child status at 30 days following discharge from PIC especially in those trusts with little or no follow-up data.
- 8 That Trusts share their experiences of the collection of NHS numbers to improve this data collection to a level in excess of 95%.
- 9 Continued efforts to capture complete national data on children admitted to adult intensive care units.
- 10 Further investigation of the differences in risk adjusted mortality and the prevalence of paediatric intensive care and invasive ventilation by Strategic Health Authorities and Primary Care Organisations to determine which factors might explain this variation.
- 11 Further exploration of the patterns of admission for individual children, as one of the key functions of PICANet is to investigate patterns of re-admission to PICUs for children across the UK.
- 12 International collaborations should be established to enable the development of large-scale audit comparisons between countries that will inform clinical practice.

### 6 BACKGROUND

PICANet was established in 2002, following a tender in 2000 by the DOH for a national paediatric intensive care database that would allow core data to be collected in a standardised way throughout all PICUs in the country.

Since November 2002, all NHS PICUs within England and Wales outside the Pan Thames region have been collecting data on consecutive admissions to their units. The Pan Thames units began data collection in March 2003, whilst the PICU at the Royal Hospital for Sick Children, Edinburgh began in December 2004. A full list of participating PICUs can be found in Appendix A.

PICANet receives support and advice from a Clinical Advisory Group consisting of doctors and nurses working within the speciality. A Steering Group (SG), comprising professionals from Health Services Research, the Royal Colleges of Paediatrics & Child Health, Nursing and Anaesthetics, and user groups such as Action for Sick Children, monitors PICANet and offers additional support and advice. Appendices B and C provide a full list of CAG and SG members. Additional support from the clinical community is provided through the Paediatric Intensive Care Society.

### 7 INTRODUCTION AND AIMS

This is the fourth national report produced by PICANet on data submitted by participating PICUs in the UK. This year, the report has been published in three formats:

- 1) As a .pdf document, downloadable from http://www.picanet.org.uk/.
- 2) As a web document with tables and figures available for download in Microsoft Excel format, again, available from http://www.picanet.org.uk/.
- 3) A limited number of printed copies.

This year we are pleased to include a number of chapters from independent contributors. The views represented in these chapters are those of the authors and do not necessarily represent the views of PICANet.

We have decided to limit the print run for environmental and cost reasons. The downloadable format means that individuals can select specific sections of the report to print if necessary and the tables and figures can be manipulated and used in presentations and reports. Please ensure that PICANet is acknowledged as the source of this information using the format given on the inside cover.

In collaboration with participating units, PICANet remains committed to achieving the following objectives:

- Identifying best practice.
- Monitoring supply and demand.
- Monitoring and reviewing outcomes of treatment episodes.
- Facilitating strategic health care planning and quantifying resource requirements.
- Studying the epidemiology of critical illness in children.

Since data collection commenced in 2002, one of the main aims of PICANet has been to provide a national database of paediatric intensive care activity of a consistently high quality, in order to help achieve the above objectives. The data collected allows comparisons of activity at a local level with nationwide benchmarks. PICANet therefore provides an important evidence base on paediatric intensive care outcomes, processes and structures, permitting planning for future practice, research and interventions.

PICANet is a resource available to clinicians and service providers, amongst others, and is being used for research, audit and commissioning (Appendix D). The provision of comprehensive, routinely available information to such parties is extremely important and is a powerful tool for supporting clinical governance. PICANet is also used to provide data to provide baseline information for clinical trials.

### 8 THE PICANet DATASET

### 8.1 Development and description of the current dataset

The PICANet dataset was established in consultation with members of the PICANet CAG, representing the paediatric intensive care community, and the Department of Health. The overriding criteria for inclusion of specific variables were that they provided key information on activity, case mix, demographics and outcome at a national and local level, that they were feasible to collect and that the wider paediatric intensive care community supported their inclusion in the national database.

The current PICANet dataset consists of 94 variables (including five address elements and the option for a second family name). These variables and their definitions are given in the PICANet Data Definitions Manual, obtainable from http://www.picanet.org.uk/. The data collection form is included in Appendix E. This dataset will be expanded from summer 2007 when PICANet software will enable the collection of the Paediatric Critical Care Minimum Dataset.

### 8.2 The Paediatric Critical Care Minimum Dataset

The Paediatric Critical Care Minimum Dataset (PCCMDS) has been developed by the Information Centre for health and social care (IC) under the guidance of the Paediatric Critical Care Expert Working Group (PCCEWG) and was issued as an NHS dataset change notice (DSCN) in January 2007. The PCCMDS has been developed to support the new Paediatric Critical Care Healthcare Resource Groups (HRGs) and Payment by Results (PbR). This dataset has many common elements with the PICANet dataset but collects information on interventions and treatment on a daily basis as opposed to an episode summary. This dataset has been mandated from October 2007.

With the support of the CAG, PICANet has agreed to enable collection of the PCCMDS using its software. The current intervention fields will be populated using the new data items. This will ensure comparability with historical PICANet data and will reduce duplication of data collection effort. In the future, PICANet will also have more detailed information on daily activity which will provide better information for clinical audit and commissioning. The software will also enable PICUs to export the PCCMDS for processing by their trust to enable accurate returns for PbR. The additional burden of data collection is estimated at 1 minute 45 seconds per patient per day based on the pilots carried out to develop the PCCMDS. PICANet will not be responsible for completing data returns for PbR from the central database The processes involved in developing the PCCMDS are described in detail in this report by Dr Kevin Morris, a member of the PCCEWG.

### 8.3 Retrievals dataset

PICANet has not collected detailed information on retrievals of critically ill children in the past, concentrating on their experience in PICU. With the support of PICANet, the Clinical Advisory Group and the Paediatric Intensive Care Society, Dr Allan Wardhaugh has developed detailed proposals for a dataset that will capture information on this important sub-population of children during the retrieval process. These proposals are outlined in a separate chapter in this report.

### 8.4 Data collection and validation

PICANet has developed a paper data collection form and bespoke data entry software to enable a consistent national dataset to be assembled. Those units who use their own or commercial data collection software have been provided with an export file specification to enable data to be imported by the PICANet software. Training sessions were organised over two days to familiarise clinical and data entry staff with data definitions, data collection issues and software. Since the original training sessions, *ad hoc* training has been provided by the PICANet team for new staff concerned with data collection and entry.

The PICANet software performs internal logical consistency and range checks as data are entered and provides an on-screen summary of outstanding validation checks on the completion of a record. Units importing data from their own databases are provided with an import log, detailing which records have been imported and any outstanding validation issues. Central validation and data quality issues are dealt with in the section on data quality.

### 8.5 Clinical coding

Clinical diagnoses and procedures are coded using Clinical Terms 3 (The Read Codes) referred to as CT3. CT3 encompasses a huge range of diagnostic, procedural and context-dependent clinical codes designed to reflect all aspects of clinical care in the population in general. The long-term strategy of the NHS is to use SNOMED CT® for clinical coding of diagnostic information (see http://www.connectingforhealth.nhs.uk/ for further details). PICANet will migrate to SNOMED CT® when the appropriate support architecture is in place but will continue to use CT3 in the meantime. There are plans to develop a SNOMED subset for PICU, an initiative supported by Connecting for Health. This issue is being taken forward by representatives of the Paediatric Intensive Care Society Study Group Health Informatics Group, with the support of PICANet, and is described in this report by Drs Padmanabhan Ramnarayan and Krishnan Thiru.

### 8.6 Confidentiality

PICANet collects patient identifiable information including name, address, date of birth and NHS number. With this information, PICANet can identify multiple admissions for the same individual, making the dataset person and episode-based. Personally identifiable information held by PICANet has been linked with death registration details, obtained from the Office for National Statistics (ONS), to assess long-term mortality in children admitted to paediatric intensive care. National census and other geographical data have been linked with validated postcodes of individual children to enable PICANet to assess the association between social class, population density and other geo-demographic and environmental information and paediatric intensive care admissions.

To comply with the provisions of the Data Protection Act, 1998, PICANet has implemented stringent confidentiality and data protection arrangements. The Patient Information Advisory Group (PIAG) has granted PICANet exemption from gaining signed parental consent under Section 60 of the Health and Social Care Act, 2001. This class support enables PICANet to collect and process patient identifiable information for the purpose of auditing, monitoring and analysing patient treatments, to ensure that adequate and appropriate paediatric intensive care services are available for all children admitted for

paediatric intensive care. Exemption was given under specified conditions in December 2002 and is due for review in June 2007.

Posters providing information about PICANet are displayed in PICUs, and information leaflets for parents / guardians and children are available (see Appendix F for a copy of the information leaflet).

### 8.7 Data transmission

The PICANet data entry software includes the facility to transmit data electronically via the NHS intranet if local IT infrastructure can be configured appropriately. The data are first encrypted using public key encryption and then placed on the server. The uploaded data is regularly moved to a secure holding area, decrypted and uploaded onto the central server database.

Where local IT departments have been unable or unwilling to configure their systems and firewalls to allow electronic transfer, the data is encrypted and placed in a local folder and then sent as an email attachment.

### 9 DATASET DEFINITIONS FOR THIS REPORT

- 1 This report covers the three year period January 2004 December 2006. During this time, there were 43,140 admissions to participating PICUs.
- 2 There are 25 participating NHS trusts (located in England, Wales and Scotland), 24 of whom collected data for the entire reporting period. The Royal Hospital for Sick Children, Edinburgh did not join PICANet until December 2004.
- 3 Trusts are identified in this report, with agreement from all participating trusts' Chief Executives.
- 4 A key enabling identification of each trust can be found on the inside cover.
- 5 The main focus of this report are admissions aged 0 15 years of which there were a total of 42,221 over the three year period. In addition there were 919 admissions aged 16 years and above.
- 6 Unless stated otherwise, the proportions in tables throughout the report are row percentages, except in the total column where they are column percentages.
- 7 'Unknown' includes cases where the unit have specifically recorded 'not known' and also cases where a required value has been left blank.

### 10 DESCRIPTION OF TABLES AND FIGURES

A brief description of the data contained in the tables and figures is given below, together with hyperlinks to the beginning of each section. In the .pdf version of this report, the hyperlink will bring you to the first page of the section. In the web document, the hyperlink will take you to an Excel spreadsheet that contains links to all the tables and figures in the section. These are all downloadable for use by individuals and organisations but please acknowledge the source of this data as indicated on the inside of the front cover. In some cases, individual figures are not described separately, as they clearly relate to the data in the tables on the same worksheet.

The PICANet dataset is dynamic and updated regularly. This means that overall admission figures have changed for 2004 and 2005 since the publication of the third national report. The data in this report are those supplied to PICANet up to March 2<sup>nd</sup>, 2007, when the dataset was frozen.

### 11 ADMISSION DATA

# 11.1 Admission numbers by age, sex, month and year of admission, NHS trust and diagnostic group

Tables 1 – 9 give numbers of admissions by age, sex, month of admission, NHS trust and diagnostic group. The primary diagnosis for the whole admission has been categorised into 13 diagnostic groups to enable a simple comparison between NHS trusts. The classification is based on CT3 (The Read Codes). Within these mutually exclusive thirteen groups:

- Infection excludes any respiratory or gastrointestinal infection but includes meningitis
- Neurological disorders include neurovascular complications
- Oncology includes neuro-oncology (brain tumours)
- Other includes those diagnoses not covered by the other 12 groups.

Read codes are five characters in length and can be made up of numbers, letters, or periods. The ordering of the individual characters does not indicate the hierarchy (e.g. patent ductus arteriosus (P70..) is a subset of congenital abnormality of ductus arteriosus (Xa6aC)). Table 8 and figure 8 focus on admissions for respiratory conditions by year and month.

### 11.2 Admissions by Strategic Health Authority (SHA) / Health Board (HB)

Tables 10a and 10b give numbers of admissions by SHA / HB, prior to and following the July 2006 NHS reorganisation. These were obtained by linking the validated home address of children admitted to PICU to SHA / HB via the National Statistics Postcode Directory (NSPD) (http://www.statistics.gov.uk/geography/nspd.asp). These tables present column percentages. Of the total number of admissions 97.5% had addresses which were validated. The remaining 2.5% included foreign addresses (2.3%) and missing addresses (0.2%). Figures 10a and 10b identify the SHA / HB boundaries pre and post reorganisation together with their names; figure 10c overlays the primary care structure.

### 11.3 Admissions by mortality risk category

Table 11 gives numbers of admissions by mortality risk group by NHS trust. The expected probability of mortality was estimated using the paediatric index of mortality (PIM)<sup>1</sup>, using recalibrated coefficients supplied by UK PICOS<sup>2</sup>. The categorization into <1%, 1-<5%, 5%-<15%, 15-<30% and 30% plus expected probability of mortality reflects those used by the Australian and New Zealand Intensive Care Society (ANZPICS)<sup>3</sup> for comparability.

### 11.4 Admissions by admission type

Tables 12 - 15 present numbers by admission type overall and by trust and year and a breakdown of the source of admission and care area admitted from by trust and year for emergency admissions (see below).

We have used the following definitions for type of admission:

• An admission that is 'planned - following surgery' is one that the unit is aware of before the surgery begins and one that could have been delayed for 24 hours without risk (e.g. spinal surgery).

- An admission that is 'unplanned following surgery' is one that the unit was not aware of before surgery began and one that could not have been delayed without risk (e.g. bleeding tonsillectomy).
- A 'planned other' admission is any other planned admission that is not an emergency (e.g. liver biopsy).
- An 'unplanned other' admission is one that the unit was not expecting and is therefore an emergency admission (e.g. status epilepticus).

NB: Surgery is defined as undergoing all or part of a procedure or anaesthesia for a procedure in an operating theatre or anaesthetic room. Patients admitted from the operating theatre where surgery is not the main reason for admission (e.g. a patient with a head injury who is admitted from theatre after insertion of an ICP monitor) are not included here. In such patients the main reason for admission is head injury and thus the admission type would be 'unplanned - other'.

### 11.5 Admissions by primary diagnostic group

Tables 16 – 22 present a breakdown of admissions by diagnostic group, overall, by trust and year and further by trust and year for each of the admission types listed above.

Tables 23 – 25 present the twenty most common Read Codes returned to PICANet for primary reason for admissions overall (these represent 15,274 (36%) of all admissions) and for unplanned admissions (after surgery and 'other') by sex without any attempt to group them further.

PICANet has not imposed an arbitrary grouping of codes but present the raw data for the top 20 codes. The level of precision in the coding method makes interpretation of these data difficult without some form of aggregation. However, PICANet has allowed the flexibility to code very specifically to enable prospective audit to focus on particular conditions; for example, respiratory syncytial virus (RSV) positive bronchiolitis. Some units have chosen to code diagnoses in more detail to allow them to use this information locally, others have coded a single diagnosis at a general level. For most reporting purposes, the broad diagnostic groups used in this report are sufficient. Further disaggregation is not always possible due to the variation in coding practice between individual units.

#### 11.6 References

- 1) Shann F, Pearson G, Slater A, Wilkinson K, Paediatric index of mortality (PIM): a mortality prediction model for children in intensive care. Intensive Care Med 1997; 23:201-207.
- 2) Brady AR, Harrison D, Black S, Jones S, Rowan K, Pearson G, Ratcliffe J, Parry GJ, on behalf of the UK PICOS Study Group. Assessment and Optimization of Mortality Prediction Tools for Admissions to Pediatric Intensive Care in the United Kingdom. Pediatrics 2006; 117: 733-742.
- 3) Australian and New Zealand Intensive Care Society. Report of the Australian and New Zealand Paediatric Intensive Care Registry 2005. ISBN: 1876980184 [Online] [Accessed 23/02/2007] Available from the World Wide Web at http://www.anzics.com.au/uploads/2005ANZPICRReport.pdf.

### 12 RETRIEVAL DATA

Tables 26 - 28 present retrieval data by team type and age, by diagnostic group for non-specialist team retrievals (see below) and by team type and trust.

Data are collected on whether or not a child was retrieved / transferred into the PICU. We have used the following definitions:

- 'Own team' identifies that your own team collected the child from the referring hospital.
- 'Other specialist team (PICU)' identifies that another PICU retrieval team transferred the child to your unit.
- 'Other specialist team (non PICU)' identifies that another transport team, not a PICU team (e.g. Accident and Emergency Department (A&E), theatre teams or neonatal teams), transferred the child to your unit.
- 'Non-specialist team' identifies that a non-PICU, non-specialist team transported the child to your unit (e.g. ward staff).

In the majority of PICUs, doctors and nurses who work on the unit undertake retrieval of critically ill children. Within London, there are two specific transport teams, the Children's Acute Transfer Service (CATS) and the South Thames retrieval team. CATS is based at Great Ormond Street Hospital (GOSH), and is staffed separately from the intensive care units at GOSH. For PICANet, any child retrieved by CATS into a PICU at GOSH is recorded as 'other specialist team (PICU)'. The South Thames retrieval team is based at Evelina Children's Hospital and is staffed by doctors and nurses from within the PICU. For PICANet, any child retrieved by the South Thames team into the PICU at Evelina Children's Hospital is classed as 'own team'.

The Central Manchester and Manchester Children's University Hospitals NHS Trust has two sister hospitals (Booth Hall and the Royal Manchester Children's Hospital). For local reporting reasons, hospital transfers between the two hospitals are classed as internal admissions (admissions from the 'same hospital') but as the hospitals are 6 miles apart, any transfer requires a 'retrieval' by ambulance and crew.

### 13 INTERVENTION DATA

Tables 29 – 31 present summary data relating to interventions carried out on PICU. Most of the interventions described are available in all PICUs, although a few specialist interventions (such as extra corporeal membrane oxygenation (ECMO) or left ventricular assist device to support cardiac function (LVAD)) are only available in a PICU where invasive cardiac procedures are routinely performed. Note that table 30 contains aggregated data for 2004 – 2006. This, however, does not include Birmingham Children's Hospital as no intervention data was returned for 2005.

Length of ventilation was calculated in whole days. Any ventilation during the period 00:00 to 23:59 was counted as one complete day of ventilation (e.g. a child intubated and ventilated at 23:45 on 7 March, and extubated at 02:30 on 8 March, would count as two days of ventilation). Intubation and extubation times are not recorded in the PICANet dataset.

Figures 31a – 31c map the percentage of children receiving invasive ventilation by SHA pre and post- the July 2006 NHS reorganisation and by primary care organisation (PCO) post October 2006 reorganisation for 2004 and 2006. Data for 2005 are not mapped as, no intervention data were returned by Birmingham Children's hospital in 2005. The proportion of children invasively ventilated has been used as a very rough proxy for level of care.

### 14 BED ACTIVITY AND LENGTH OF STAY

Tables 32 - 33 present data on total bed days delivered by age and sex overall and by age by trust. The total number of bed days delivered is calculated as the sum of children receiving intensive care in a PICU each day. Tables 34 – 35 and their associated figures present summary data by year and month and by trust and year on a 'bed census': the number of children present in a PICU bed at 10 minutes past midnight. Tables 36 - 37 present data we describe as 'bed activity' by month and by trust, where a bed is counted as occupied if a child was present on a unit for any part of a the day. This inevitably results in higher figures than the bed census data as a bed may have more than one child occupying it in any one day. Tables 38 - 39 present summary data on length of stay by trust and age group and trust and diagnostic group. Table 40 groups the number of admissions by length of stay by trust, calculated to the minute in categories ranging from less than 1 hour to over 1 week. Children admitted prior to the report period, but discharged during it, are counted from 00:00 on 1 January 2004 until their discharge (or until 24:00 on 31 December 2006 if not discharged). Children admitted during the report period but discharged in 2007 (or who are still on the PICU) are counted from their admission date until 24:00 on 31 December 2006.

The number of bed days, bed census, bed activity and length of stay data are summarised by median and interquartile range (IQR). Median daily bed census figures and daily bed activity are plotted using a box and whisker graph by month and year, and by NHS trust. This type of graph indicates the median by a line within the coloured box, the ends of which give the IQR. The 'whiskers' indicate values beyond the IQRs, although extreme outside values are not plotted.

### 15 OUTCOME DATA

PICU mortality data are described in terms of unit discharge status by age and sex for England, Wales and Edinburgh combined, and by trust in tables 41 – 45 and also using unadjusted and risk-adjusted standardized mortality ratios (SMRs). Table 46 describes the discharge destination of children discharged alive from PICU. Unadjusted SMRs are calculated by dividing the expected number of deaths, based on the national data by the observed number of deaths in each trust. In addition, risk-adjusted SMRs are calculated by dividing the expected number of deaths predicted by PIM<sup>1</sup> by the observed number of deaths in each trust. We have used the original version of PIM with revised coefficients supplied by UK PICOS<sup>2</sup> that give a better calibration as these coefficients are based on a more recent dataset. We have also produced SMRs using PIM 2<sup>3</sup> for 2006.

Unadjusted and risk-adjusted SMRs are presented by trust and year for 2004, 2005, 2006 and combined years in tables 47 - 49. PICU mortality funnel plots for the same periods are presented in figures 47a - 50b to provide a visual means of comparing unadjusted and adjusted SMRs between trusts, without imposing the ranking observed in league tables. Figure 49c presents risk-adjusted mortality using PIM 2.

The SMRs are plotted on the y-axis against the number of admissions to the trust on the x-axis. Higher mortality rates are represented by points plotted above the line of unity, with those appearing outside the upper control limit indicating an unusual excess mortality. Lower mortality rates are represented by points plotted below the line of unity and those falling below the lower control limit indicate unusually low mortality. In order to satisfy the condition, that if the overall distribution of the mortality ratios is random, there exists an approximately 5% chance of a unit falling outside the control limits, then the upper and lower control limits constructed at an individual unit level must represent not 95% confidence intervals, but 99.9% confidence intervals around a mortality ratio of one by number of admissions.<sup>4</sup> This is analogous to increasing the confidence interval (or significance level) when correcting for multiple comparisons in data containing numerous groups. This means that the funnel plots are drawn in such a way that there is an approximately 5% chance of a unit falling outside the control limits if the distribution of SMRs is random.

In figures 50c and 50d, risk-adjusted SMRs by SHA, pre and post the July 2006 NHS organisation, have been produced by allocating children to the SHA in which they were living based on their address at admission. These ratios have then been expressed as a percentage and mapped to illustrate the range of variability in SMRs between SHAs. It should be noted that these ratios have not been subject to any spatial smoothing and confidence intervals are relatively wide in areas of low population. Tables 51 - 55 present 30-day follow-up data by age, sex and trust.

### 15.1 References

- 1) Shann F, Pearson G, Slater A, Wilkinson K, Paediatric index of mortality (PIM): a mortality prediction model for children in intensive care. Intensive Care Med 1997; 23:201-207.
- Brady AR, Harrison D, Black S, Jones S, Rowan K, Pearson G, Ratcliffe J, Parry GJ, on behalf of the UK PICOS Study Group. Assessment and Optimization of Mortality Prediction Tools for Admissions to Pediatric Intensive Care in the United Kingdom. Pediatrics 2006; 117: 733-742.
- 3) Shann F, Slater A, Pearson G. PIM 2: a revised version of the Paediatric Index of mortality. Intensive Care Med 2003; 29:278-285
- 4) Spiegelhalter D. Funnel plots for institutional comparison. Quality and Safety in Health Care 2002;11(4):390-391.

### 16 DATA ON INDIVIDUAL CHILDREN

In all other chapters of this report, PICU activity is presented for episodes of care or admissions. This chapter describes activity related to 31,320 individual patients representing the 42,221 admissions (0 - 15 years) during 2004 – 2006.

Firstly, Table 56 summarises admissions by the source of their previous admission (same or other trust or single admission only). Table 57 reports the number of children having repeat admissions by trust and Table 58 the number of children admitted by diagnostic group. Table 59 summarises the number of children admitted by diagnostic group either once to a single trust, more than once to the same trust or more than once to more than 1 trust.

### 17 PREVALENCE FOR ADMISSION

Age and sex specific prevalence for admission to PICUs in England and Wales has been calculated with 95% Poisson confidence intervals using population counts from the 2001 Census<sup>1</sup> (table 60). Age-sex standardised prevalence for the childhood population (less than 16 years) by SHA and HB (pre and post the October 2006 NHS reorganisation – tables 61a and 61b). These are mapped in figures 61a and 61b respectively.

Children were allocated to an SHA / HB using their residential address at admission. Addresses were validated using AFD Postcode Plus address validation software to obtain a correct postcode. Using the National Statistics Postcode Directory (http://www.statistics.gov.uk/geography/nspd.asp), postcodes were then linked to SHA / HB.

We have also presented age-sex standardised prevalence by 2006 primary care organisation (PCO) in figure 61c.

Prevalence for Scotland is not presented as PICANet currently only receives data from the Royal Hospital for Sick Children, Edinburgh.

- Office for National Statistics. 2001 Census : Census Area Statistics (England and Wales) [computer file]. ESRC/JISC Census Programme, Census Dissemination Unit, MIMAS (University of Manchester).
- AFD Refiner Q.2/07. AFD Software Ltd, Lough House, Approach Road, Ramsey, ISLE OF MAN, IM8 1RG, UK, 2007.

### 18 CHILDREN RECEIVING CARE IN ADULT INTENSIVE CARE UNITS

Data on children (under 16 years) treated in adult intensive care units (AICUs), including age in months, sex, date of admission and discharge, outcome and discharge location and admission diagnosis, were provided by the Intensive Care National Audit & Research Centre (ICNARC) and the South West Audit of Critically III Children (SWACIC). These data are summarised in tables 62 - 67. Analysis is restricted to 2005. ICNARC receives data from 74% of AICUs in England.

Signed consent was obtained from the unit director of each AICU. One AICU providing data to SWACIC did not give explicit permission for PICANet to receive their data.

### 19 DATA QUALITY Dr Krish Thiru

PICANet has now embarked on its sixth year of data collection. Its does so with the knowledge that it has established one of the highest quality national core datasets in paediatric medicine within the UK.

Considerable effort has been made by both PICU staff and the PICANet team to ensure that the data is of the highest quality. During previous years, the PICANet team visited individual units to review a sample of records to cross check that the data submitted to PICANet corresponded to that data held in the unit's paper records and clinical information systems. Validation visits were suspended due to staff shortages but will resume this year.

This chapter details improvements in data quality during last year and highlights areas needing attention. The results are presented by NHS Trust as well as by unit to acknowledge the importance of unit level data management.

### 19.1 Data quality assurance processes

- At input, internal logical, consistency and range checks are carried out at input by the PICANet software with an on-screen summary of outstanding validation checks on completion of a record. Units importing data from their own databases or commercial software are provided with an import log detailing which records have been imported and outstanding validation issues.
- Data transmitted to the PICANet central server in Leeds are subject to a series of additional validation checks (including address and postcode validation and clinical coding verification). Data validation reports (DVRs) are returned via email (Appendix G).
- 3) Units are provided with monthly admission reports (Appendix H) and asked to cross check these with local patient registers (e.g. unit admission book).
- 4) Units are provided with error status reports (Appendix I) which highlight particular dimensions of data quality that require attention, these include the number of missing values returned.

Full details of the PICANet data quality control and assurance processes are provided in the PICANet National Report 2003 - 2004.

The completeness level for all data items collected by PICANet are given in Table DQ1, showing 94.7% completeness of the data items. Table DQ2 details the completeness of the data by month by year for the last 3 years, while table DQ3 provides a breakdown by individual unit for the combined 3 years. The PICANet dataset contains 4.7% of exception values (i.e. data collected as 'not recorded' or 'not known') and with 0.6% left blank. Figure DQ1 highlights twelve data items found to have the largest number of exception or blank values.

## Table DQ1 Data completeness

|                 |          | Complete         |        |       |        |         |         |                             |       |       |        |       |        |
|-----------------|----------|------------------|--------|-------|--------|---------|---------|-----------------------------|-------|-------|--------|-------|--------|
| FIELD           | Eligible | Valid Exceptions |        |       |        | Tota    | al      | Incomplete<br>Invalid Blank |       |       |        | Total |        |
|                 | -        | n                | %      | n     | %      | n       | %       | n                           | %     | n     | %      | n     | %      |
| ADDATE          | 43140    | 43140 (          | 100.0) | 0     | (0.0)  | 43140   | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| ADDRESS1        | 43140    | 43119 (          | 100.0) | 0     | (0.0)  | 43119   | (100.0) | 0                           | (0.0) | 21    | (0.0)  | 21    | (0.0)  |
| ADNO            | 43140    | 43139 (          | 100.0) | 0     | (0.0)  | 43139   | (100.0) | 0                           | (0.0) | 1     | (0.0)  | 1     | (0.0)  |
| ADTIME          | 43140    | 43135 (          | 100.0) | 0     | (0.0)  | 43135   | (100.0) | 0                           | (0.0) | 5     | (0.0)  | 5     | (0.0)  |
| ADTYPE          | 43140    | 43023            | (99.7) | 116   | (0.3)  | 43139   | (100.0) | 0                           | (0.0) | 1     | (0.0)  | 1     | (0.0)  |
| APDIAG          | 43140    | 43140 (          | 100.0) | 0     | (0.0)  | 43140   | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| BASEEXCESS      | 33070    | 27101            | (82.0) | 5969  | (18.0) | 33070   | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| BGFIRSTHR       | 24206    | 23192            | (95.8) | 1010  | (4.2)  | 24202   | (100.0) | 0                           | (0.0) | 4     | (0.0)  | 4     | (0.0)  |
| BPSYS           | 43140    | 36854            | (85.4) | 6191  | (14.4) | 43045   | (99.8)  | 0                           | (0.0) | 95    | (0.2)  | 95    | (0.2)  |
| CAREAREAAD      | 42516    | 41118            | (96.7) | 1396  | (3.3)  | 42514   | (100.0) | 0                           | (0.0) | 2     | (0.0)  | 2     | (0.0)  |
| CASENO          | 43140    | (                | 100.0) | 0     | (0.0)  | 43139   | (100.0) | 0                           | (0.0) | 1     | (0.0)  | 1     | (0.0)  |
| DELORDER        | 1342     | 1141             | (85.0) | 201   | (15.0) | 1342    | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| DISPALCARE      | 40914    | 40297            | (98.5) | 617   | (1.5)  | 40914   | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| DOB             | 43131    | (                | 100.0) | 0     | (0.0)  | 43131   | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| DOBEST          | 43140    | ,                | 100.0) | 6     | (0.0)  | 43138   | (100.0) | 0                           | (0.0) | 2     | (0.0)  | 2     | (0.0)  |
| DOD             | 2676     | 2668             | (99.7) | 0     | (0.0)  | 2668    | (99.7)  | 0                           | (0.0) | 8     | (0.3)  | 8     | (0.3)  |
| ЕСМО            | 43140    | 41985            | (97.3) | 1153  | (2.7)  | 43138   | (100.0) | 0                           | (0.0) | 2     | (0.0)  | 2     | (0.0)  |
| ETHNIC          | 43140    | (                | 100.0) | 0     | (0.0)  | 43138   | (100.0) | 0                           | (0.0) | 2     | (0.0)  | 2     | (0.0)  |
| FAMILYNAME      | 43140    | (                | 100.0) | 0     | (0.0)  | 43131   | (100.0) | 0                           | (0.0) | 9     | (0.0)  | 9     | (0.0)  |
| FIO2            | 31831    | 25080            | (78.8) | 5861  | (18.4) | 30941   | (97.2)  | 0                           | (0.0) | 890   | (2.8)  | 890   | (2.8)  |
| FIRSTNAME       | 43140    | ,                | 100.0) | 0     | (0.0)  | 43130   | (100.0) | 0                           | (0.0) | 10    | (0.0)  | 10    | (0.0)  |
| FU30DISSTATUS   | 39536    | 19598            | (49.6) | 19857 | (50.2) | 39455   | (99.8)  | 0                           | (0.0) | 81    | (0.2)  | 81    | (0.2)  |
| FU30LOCATION    | 19185    | 16803            | (87.6) | 2381  | (12.4) | 19184   | (100.0) | 0                           | (0.0) | 1     | (0.0)  | 1     | (0.0)  |
| FU30LOCHOSP     | 3232     | 3125             | (96.7) | 107   | (3.3)  | 3232    | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| GEST            | 24966    | 16487            | (66.0) | 8477  | (34.0) | 24964   | (100.0) | 0                           | (0.0) | 2     | (0.0)  | 2     | (0.0)  |
| HEADBOX         | 31831    | 30008            | (94.3) | 1475  | (4.6)  | 31483   | (98.9)  | 0                           | (0.0) | 348   | (1.1)  | 348   | (1.1)  |
| ICPDEVICE       | 24206    | 23468            | (97.0) | 735   | (3.0)  | 24203   | (100.0) | 0                           | (0.0) | 3     | (0.0)  | 3     | (0.0)  |
| INTTRACHEOSTOMY |          | 41865            | (97.0) | 1273  | (3.0)  | 43138   | (100.0) | 0                           | (0.0) | 2     | (0.0)  | 2     | (0.0)  |
| INTUBATION      | 31831    | 30913            | (97.1) | 580   | (1.8)  | 31493   | (98.9)  | 0                           | (0.0) | 338   | (1.1)  | 338   | (1.1)  |
| INTUBDAYS       | 28       |                  | 100.0) | 0     | (0.0)  | 28      | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| INTUBEVER       | 43140    | ,                | 100.0) | 0     | (0.0)  | 43140   | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| INVVENT         | 43127    | 41848            | (97.0) | 1278  | (3.0)  | 43126   | (100.0) | 0                           | (0.0) | 1     | (0.0)  | 1     | (0.0)  |
| INVVENTDAY      | 28706    | 28532            | (99.4) | 172   | (0.6)  | 28704   | (100.0) | 0                           | (0.0) | 2     | (0.0)  | 2     | (0.0)  |
| LVAD            | 43140    | 41981            | (97.3) | 1157  | (2.7)  | 43138   | (100.0) | 0                           | (0.0) | 2     | (0.0)  | 2     | (0.0)  |
| MECHVENT        | 43140    | 42596            | (98.7) | 538   | (1.2)  | 43134   | (100.0) | 0                           | (0.0) | 6     | (0.0)  | 6     | (0.0)  |
| MEDHISTEVID     | 43140    | 42630            | (98.8) | 503   | (1.2)  | 43133   | (100.0) | 0                           | (0.0) | 7     | (0.0)  | 7     | (0.0)  |
| MULT            | 43140    | 33469            | (77.6) | 9668  | (22.4) | 43137   | (100.0) | 0                           | (0.0) | 3     | (0.0)  | 3     | (0.0)  |
| NHSNO           | 43140    | 32268            | (74.8) | 1620  | (3.8)  | 33888   | (78.6)  | 0                           | (0.0) | 9252  | (21.4) | 9252  | (21.4) |
| NONINVVENT      | 43140    | 41719            | (96.7) | 1419  | (3.3)  | 43138   | (100.0) | 0                           | (0.0) | 2     | (0.0)  | 2     | (0.0)  |
| NONINVVENTDAY   | 5287     | 5267             | (99.6) | 19    | (0.4)  | 5286    | (100.0) | 0                           | (0.0) | 1     | (0.0)  | 1     | (0.0)  |
| PAO2            | 33070    | 23077            | (69.8) | 9991  | (30.2) | 33068   | (100.0) | 0                           | (0.0) | 2     | (0.0)  | 2     | (0.0)  |
| POSTCODE        | 43140    | 43103            | (99.9) | 0     | (0.0)  | 43103   | (99.9)  | 0                           | (0.0) | 37    | (0.1)  | 37    | (0.1)  |
| PREVICUAD       | 43140    | 42538            | (98.6) | 602   | (1.4)  | 43140   | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| PRIMDIAG        | 43140    | 42963            | (99.6) | 0     | (0.0)  | 42963   | (99.6)  | 37                          | (0.1) | 140   | (0.3)  | 177   | (0.4)  |
| PRIMREASON      | 24206    | 23596            | (97.5) | 598   | (2.5)  |         | (100.0) | 0                           | (0.0) | 12    | (0.0)  | 12    | (0.0)  |
| PUPREACT        | 43140    |                  | (90.7) | 3999  | (9.3)  |         | (100.0) | 0                           | (0.0) | 5     | (0.0)  | 5     | (0.0)  |
| RENALSUPPORT    | 24206    |                  | (97.0) | 721   | (3.0)  |         | (100.0) | 0                           | (0.0) | 3     | (0.0)  | 3     | (0.0)  |
| RETRIEVAL       | 43140    | 42954            | (99.6) | 178   | (0.4)  |         | (100.0) | 0                           | (0.0) | 8     | (0.0)  | 8     | (0.0)  |
| RETRIEVALBY     | 14796    |                  | (97.1) | 411   | (2.8)  | 14773   | · /     | 0                           | (0.0) | 23    | (0.2)  | 23    | (0.2)  |
| SEX             | 43140    | 43090            | (99.9) | 43    | (0.1)  |         | (100.0) | 7                           | (0.0) | 0     | (0.0)  | 7     | (0.0)  |
| SOURCEAD        | 43140    | 42977            | (99.6) | 163   | (0.4)  |         | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| TIMEDTH         | 2212     | 2212 (           |        | 0     | (0.0)  |         | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| UNITDISDATE     | 43127    | ,                | 100.0) | 0     | (0.0)  |         | (100.0) | 0                           | (0.0) | 6     | (0.0)  | 6     | (0.0)  |
| UNITDISDEST     | 40914    |                  | (99.1) | 351   | (0.9)  |         | (100.0) | 0                           | (0.0) | 1     | (0.0)  | 1     | (0.0)  |
| UNITDISDESTHOSP | 39661    | 35955            | (90.7) | 3706  | (9.3)  |         | (100.0) | 0                           | (0.0) | 0     | (0.0)  | 0     | (0.0)  |
| UNITDISSTATUS   | 43140    | ,                | 100.0) | 1     | (0.0)  |         | (100.0) | 0                           | (0.0) | 13    | (0.0)  | 13    | (0.0)  |
| UNITDISTIME     | 43127    | ,                | 100.0) | 0     | (0.0)  |         | (100.0) | 0                           | (0.0) | 14    | (0.0)  | 14    | (0.0)  |
| VASOACTIVE      | 43140    | 41815            | (96.9) | 1323  | (3.1)  |         | (100.0) | 0                           | (0.0) | 2     | (0.0)  | 2     | (0.0)  |
| Total           | 2031140  | 1923860          | (94.7) | 95866 | (4.7)  | 2019726 | (99.4)  | 44                          | (0.0) | 11370 | (0.6)  | 11414 | (0.6)  |

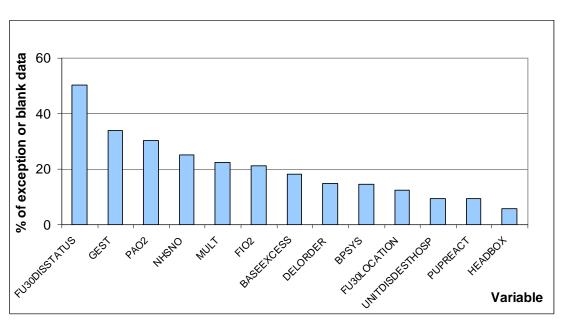
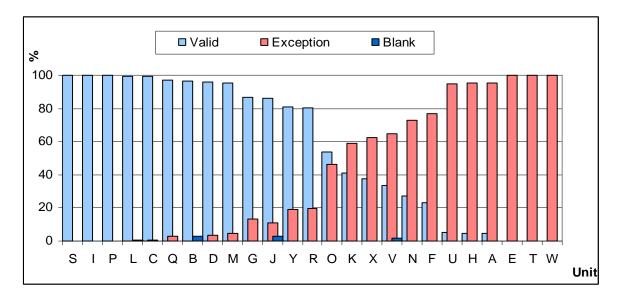




Figure DQ1 Percentage of exception or blank values in the PICANet dataset

Note: Full description of variables are provided in the PICANet Data Definitions Manual

Some of these data items are used in the calculation of the Paediatric Index of Mortality (PIM) 2. PICANet is investigating the impact of missing data on this risk adjustment index. Thirty-day follow-up status is a standard patient care outcome measure used across the NHS. Within PICANet, 30 day follow-up data is 99% complete, however 50% of this data is recoded as 'not known'. The distribution of 30 day follow-up data collection across PICANet units is detailed in figure DQ2.

Figure DQ2 Data completeness for 30-day follow-up information



The NHS Number is a unique patient identifier that provides a common link between patient records across the NHS. The number can be used by Trust Patient Administration Systems/Patient Information Systems to easily and reliably link to the PICANet database.

### Table DQ2 Data completeness by year (all variables)

|            |        |                | Completion          |        |       |       |                |               |      |       |       |       |            |       |  |
|------------|--------|----------------|---------------------|--------|-------|-------|----------------|---------------|------|-------|-------|-------|------------|-------|--|
|            |        |                | Complete Incomplete |        |       |       |                |               |      |       |       |       |            |       |  |
| Year Month | Month  | Eligible       | Valid Exceptions    |        |       |       | Tota           | al            | Inva | lid   | Blank |       | Tota       | al    |  |
|            |        |                | n                   | %      | n     | %     | n              | %             | n    | %     | n     | %     | n          | %     |  |
|            |        |                |                     |        |       |       |                |               |      |       |       |       |            |       |  |
| 2004       | 1      | 58682          | 55491               | (94.6) | 2744  | (4.7) | 58235          | (99.2)        | 4    | (0.0) | 443   | (0.8) | 447        | (0.8) |  |
|            | 2      | 55231          | 52175               | (94.5) | 2645  | (4.8) | 54820          | (99.3)        | 1    | (0.0) | 410   | (0.7) | 411        | (0.7) |  |
|            | 3      | 58333          | 54873               | (94.1) | 2987  | (5.1) | 57860          | (99.2)        | 1    | (0.0) | 472   | (0.8) | 473        | (0.8) |  |
|            | 4      | 52606          | 49716               | (94.5) | 2515  | (4.8) | 52231          | (99.3)        | 4    | (0.0) | 371   | (0.7) | 375        | (0.7) |  |
|            | 5      | 51913          | 48991               | (94.4) | 2506  | (4.8) | 51497          | (99.2)        | 2    | (0.0) | 414   | (0.8) | 416        | (0.8  |  |
|            | 6      | 52888          | 50072               | (94.7) | 2421  | (4.6) | 52493          | (99.3)        | 0    | (0.0) | 395   | (0.7) | 395        | (0.7) |  |
|            | 7      | 49904          | 47047               | (94.3) | 2508  | (5.0) | 49555          | (99.3)        | 1    | (0.0) | 348   | (0.7) | 349        | (0.7) |  |
|            | 8      | 49350          | 46474               | (94.2) | 2512  | (5.1) | 48986          | (99.3)        | 0    | (0.0) | 364   | (0.7) | 364        | (0.7) |  |
|            | 9      | 50505          | 47714               | (94.5) | 2426  | (4.8) | 50140          | (99.3)        | 1    | (0.0) | 364   | (0.7) | 365        | (0.7) |  |
|            | 10     | 51385          | 48414               | (94.2) | 2549  | (5.0) | 50963          | (99.2)        | 0    | (0.0) | 422   | (0.8) | 422        | (0.8) |  |
|            | 11     | 55158          | 52056               | (94.4) | 2592  | (4.7) | 54648          | (99.1)        | 4    | (0.0) | 506   | (0.9) | 510        | (0.9) |  |
|            | 12     | 56799          | 53729               | (94.6) | 2667  | (4.7) | 56396          | (99.3)        | 0    | (0.0) | 403   | (0.7) | 403        | (0.7) |  |
| 2004       | Fotal  | 642754         | 606752              | (94.4) | 31072 | (4.8) | 637824         | (99.2)        | 18   | (0.0) | 4912  | (0.8) | 4930       | (0.8) |  |
| 2005       | 1      | 55686          | 51916               | (93.2) | 3340  | (6.0) | 55256          | (99.2)        | 4    | (0.0) | 429   | (0.8) | 430        | (0.8) |  |
| 2005       | 2      | 52562          | 49017               | (93.2) | 3199  | (6.0) | 52256          | (99.2)        | 1    | (0.0) | 345   | (0.8) | 346        | . ,   |  |
|            | 2      | 52562          | 52425               | (93.0) | 3601  | (6.4) | 56026          |               | 0    | (0.0) | 345   | (0.7) | 340        | (0.7) |  |
|            | 3<br>4 | 56360          | 48634               | (93.0) | 3111  | (6.0) |                | (99.4)        | 0    | (0.0) | 334   | (0.6) |            | (0.6) |  |
|            | 4      | 52065<br>55150 | 51706               | (93.4) | 3150  | (5.7) | 51745<br>54856 | (99.4) (99.5) | 4    | (0.0) | 290   | (0.6) | 320<br>294 | (0.6) |  |
|            | 5      | 58104          | 54620               | (93.8) | 3150  | (5.7) | 57800          | (99.5)        | 4    | (0.0) | 303   | (0.5) | 294<br>304 | (0.5) |  |
|            | 7      | 57810          | 54293               | (94.0) | 3167  | (5.5) | 57460          | (99.4)        | 4    | (0.0) | 346   | (0.5) | 304        | (0.5) |  |
|            | 8      | 53817          | 50577               | (93.9) | 2932  | (5.4) | 53509          | (99.4)        |      | (0.0) | 340   | (0.6) | 308        | (0.6) |  |
|            | 9      | 56570          | 53105               | (94.0) | 3147  | (5.6) | 56252          | (99.4)        | 6    | (0.0) | 312   | (0.6) | 318        | (0.6) |  |
|            |        | 54839          | 51642               | (94.2) | 2874  | (5.2) | 54516          | (99.4)        | 1    | (0.0) | 312   | (0.6) | 323        | (0.6) |  |
|            | 10     | 61505          | 57892               | (94.1) | 3300  | (5.4) | 61192          | (99.5)        | 2    | (0.0) | 311   | (0.0) | 313        | (0.5) |  |
|            | 12     | 61132          | 57278               | (93.7) | 3533  | (5.8) | 60811          | (99.5)        | 4    | (0.0) | 317   | (0.5) | 321        | (0.5) |  |
| 2005       |        | 675600         | 633105              | (93.7) | 38534 | (5.8) | 671639         | (99.4)        | 24   | (0.0) | 3937  | (0.5) | 3961       | (0.6) |  |
| 2000       | otai   | 010000         | 000100              | (33.1) | 00004 | (0.7) | 071000         | (55.4)        | 27   | (0.0) | 0001  | (0.0) | 0001       | (0.0) |  |
| 2006       | 1      | 65153          | 62395               | (95.8) | 2576  | (4.0) | 64971          | (99.7)        | 0    | (0.0) | 182   | (0.3) | 182        | (0.3) |  |
|            | 2      | 59114          | 56608               | (95.8) | 2336  | (4.0) | 58944          | (99.7)        | 0    | (0.0) | 170   | (0.3) | 170        | (0.3) |  |
|            | 3      | 63110          | 60567               | (96.0) | 2375  | (3.8) | 62942          | (99.7)        | 0    | (0.0) | 168   | (0.3) | 168        | (0.3) |  |
|            | 4      | 57422          | 54962               | (95.7) | 2280  | (4.0) | 57242          | (99.7)        | 1    | (0.0) | 179   | (0.3) | 180        | (0.3) |  |
|            | 5      | 60152          | 57785               | (96.1) | 2188  | (3.6) | 59973          | (99.7)        | 0    | (0.0) | 179   | (0.3) | 179        | (0.3) |  |
|            | 6      | 57887          | 55633               | (96.1) | 2049  | (3.5) | 57682          | (99.6)        | 0    | (0.0) | 205   | (0.4) | 205        | (0.4) |  |
|            | 7      | 56573          | 54386               | (96.1) | 1974  | (3.5) | 56360          | (99.6)        | 0    | (0.0) | 213   | (0.4) | 213        | (0.4) |  |
|            | 8      | 56070          | 53821               | (96.0) | 2051  | (3.7) | 55872          | (99.6)        | 0    | (0.0) | 198   | (0.4) | 198        | (0.4) |  |
|            | 9      | 54838          | 52655               | (96.0) | 1958  | (3.6) | 54613          | (99.6)        | 0    | (0.0) | 225   | (0.4) | 225        | (0.4) |  |
|            | 10     | 59765          | 57450               | (96.1) | 2126  | (3.6) | 59576          | (99.7)        | 0    | (0.0) | 189   | (0.3) | 189        | (0.3) |  |
|            | 11     | 61777          | 59424               | (96.2) | 2109  | (3.4) | 61533          | (99.6)        | 0    | (0.0) | 244   | (0.4) | 244        | (0.4) |  |
|            | 12     | 60925          | 58317               | (95.7) | 2238  | (3.7) | 60555          | (99.4)        | 1    | (0.0) | 369   | (0.6) | 370        | (0.6) |  |
| 2006 -     | Total  | 712786         | 684003              | (96.0) | 26260 | (3.7) | 710263         | (99.6)        | 2    | (0.0) | 2521  | (0.4) | 2523       | (0.4) |  |
|            |        |                |                     |        |       |       |                | 1             |      |       |       |       |            |       |  |
| Total      |        | 2031140        | 1923860             | (94.7) | 95866 | (4.7) | 2019726        | (99.4)        | 44   | (0.0) | 11370 | (0.6) | 11414      | (0.6) |  |

The distribution of NHS number recording in PICANet units is detailed in table DQ4 and in figure DQ3 below. 25% of patients within PICANet do not have NHS numbers.

### Table DQ3 Data completeness by PICU

|             |          |         | Comp   | lete       |        |         |         |       | Incom   | plete |       |       |       |
|-------------|----------|---------|--------|------------|--------|---------|---------|-------|---------|-------|-------|-------|-------|
| PICU        | Eligible | Valid   |        | Exceptions |        | Total   |         | Inval | Invalid |       | Blank |       | al    |
|             |          | n       | %      | n          | %      | n       | %       | n     | %       | n     | %     | n     | %     |
| Α           | 60813    | 53744   | (88.4) | 6495       | (10.7) | 60239   | (99.1)  | 0     | (0.0)   | 574   | (0.9) | 574   | (0.9) |
| В           | 34864    | 32734   | (93.9) | 1582       | (4.5)  | 34316   | (98.4)  | 0     | (0.0)   | 548   | (1.6) | 548   | (1.6) |
| С           | 41206    | 40316   | (97.8) | 877        | (2.1)  | 41193   | (100.0) | 0     | (0.0)   | 13    | (0.0) | 13    | (0.0) |
| D           | 85370    | 83469   | (97.8) | 1819       | (2.1)  | 85288   | (99.9)  | 0     | (0.0)   | 82    | (0.1) | 82    | (0.1) |
| E           | 234799   | 225582  | (96.1) | 8123       | (3.5)  | 233705  | (99.5)  | 0     | (0.0)   | 1094  | (0.5) | 1094  | (0.5) |
| F           | 159625   | 151325  | (94.8) | 7457       | (4.7)  | 158782  | (99.5)  | 9     | (0.0)   | 834   | (0.5) | 843   | (0.5) |
| G           | 6286     | 6181    | (98.3) | 102        | (1.6)  | 6283    | (100.0) | 0     | (0.0)   | 3     | (0.0) | 3     | (0.0) |
| Н           | 45996    | 42271   | (91.9) | 3140       | (6.8)  | 45411   | (98.7)  | 0     | (0.0)   | 585   | (1.3) | 585   | (1.3) |
| 1           | 126319   | 123715  | (97.9) | 2282       | (1.8)  | 125997  | (99.7)  | 0     | (0.0)   | 322   | (0.3) | 322   | (0.3) |
| J           | 11825    | 10931   | (92.4) | 570        | (4.8)  | 11501   | (97.3)  | 0     | (0.0)   | 324   | (2.7) | 324   | (2.7) |
| K1          | 41476    | 39747   | (95.8) | 1449       | (3.5)  | 41196   | (99.3)  | 0     | (0.0)   | 280   | (0.7) | 280   | (0.7) |
| K2          | 48207    | 46105   | (95.6) | 1978       | (4.1)  | 48083   | (99.7)  | 0     | (0.0)   | 124   | (0.3) | 124   | (0.3) |
| K3          | 39640    | 37546   | (94.7) | 1946       | (4.9)  | 39492   | (99.6)  | 0     | (0.0)   | 148   | (0.4) | 148   | (0.4) |
| L           | 39440    | 38133   | (96.7) | 966        | (2.4)  | 39099   | (99.1)  | 0     | (0.0)   | 341   | (0.9) | 341   | (0.9) |
| М           | 55235    | 53394   | (96.7) | 1748       | (3.2)  | 55142   | (99.8)  | 0     | (0.0)   | 93    | (0.2) | 93    | (0.2) |
| N           | 43674    | 41687   | (95.5) | 1608       | (3.7)  | 43295   | (99.1)  | 0     | (0.0)   | 379   | (0.9) | 379   | (0.9) |
| 0           | 87796    | 82105   | (93.5) | 4893       | (5.6)  | 86998   | (99.1)  | 0     | (0.0)   | 798   | (0.9) | 798   | (0.9) |
| Р           | 151790   | 146637  | (96.6) | 5048       | (3.3)  | 151685  | (99.9)  | 0     | (0.0)   | 105   | (0.1) | 105   | (0.1) |
| Q1          | 11668    | 11130   | (95.4) | 520        | (4.5)  | 11650   | (99.8)  | 0     | (0.0)   | 18    | (0.2) | 18    | (0.2) |
| Q2          | 67013    | 64263   | (95.9) | 2469       | (3.7)  | 66732   | (99.6)  | 0     | (0.0)   | 281   | (0.4) | 281   | (0.4) |
| R           | 96511    | 94700   | (98.1) | 1359       | (1.4)  | 96059   | (99.5)  | 0     | (0.0)   | 452   | (0.5) | 452   | (0.5) |
| S           | 25593    | 24299   | (94.9) | 1088       | (4.3)  | 25387   | (99.2)  | 0     | (0.0)   | 206   | (0.8) | 206   | (0.8) |
| Т           | 56227    | 52094   | (92.6) | 3506       | (6.2)  | 55600   | (98.9)  | 0     | (0.0)   | 627   | (1.1) | 627   | (1.1) |
| U           | 55469    | 51274   | (92.4) | 3424       | (6.2)  | 54698   | (98.6)  | 0     | (0.0)   | 771   | (1.4) | 771   | (1.4) |
| V           | 139071   | 122461  | (88.1) | 15027      | (10.8) | 137488  | (98.9)  | 35    | (0.0)   | 1548  | (1.1) | 1583  | (1.1) |
| W           | 96191    | 89415   | (93.0) | 6049       | (6.3)  | 95464   | (99.2)  | 0     | (0.0)   | 727   | (0.8) | 727   | (0.8) |
| X1          | 73829    | 69980   | (94.8) | 3829       | (5.2)  | 73809   | (100.0) | 0     | (0.0)   | 20    | (0.0) | 20    | (0.0) |
| X2          | 53119    | 48135   | (90.6) | 4911       | (9.2)  | 53046   | (99.9)  | 0     | (0.0)   | 73    | (0.1) | 73    | (0.1) |
| Y           | 42088    | 40487   | (96.2) | 1601       | (3.8)  | 42088   | (100.0) | 0     | (0.0)   | 0     | (0.0) | 0     | (0.0) |
| Grand Total | 2031140  | 1923860 | (94.7) | 95866      | (4.7)  | 2019726 | (99.4)  | 44    | (0.0)   | 11370 | (0.6) | 11414 | (0.6) |

### Table DQ4 Data completeness for NHS number by NHS trust

| NHS trust | Eligible | Valio |        | Except | ions   | Inva | lid   | Bla  | nk     |
|-----------|----------|-------|--------|--------|--------|------|-------|------|--------|
|           |          | n     | %      | n      | %      | -    | %     | n    | %      |
| Α         | 1328     | 0     | (0.0)  | 755    | (56.9) | 0    | (0.0) | 573  | (43.1) |
| в         | 763      | 404   | (52.9) | 0      | (0.0)  |      | (0.0) | 359  | (47.1) |
| С         | 851      | 848   | (99.6) | 0      | (0.0)  | 0    | (0.0) | 3    | (0.4)  |
| D         | 1780     | 1772  | (99.6) | 8      | (0.4)  | 0    | (0.0) | 0    | (0.0)  |
| E         | 4993     | 3900  | (78.1) | 0      | (0.0)  | 0    | (0.0) | 1093 | (21.9) |
| F         | 3411     | 2667  | (78.2) | 0      | (0.0)  | 0    | (0.0) | 744  | (21.8) |
| G         | 132      | 131   | (99.2) | 0      | (0.0)  | 0    | (0.0) | 1    | (0.8)  |
| н         | 979      | 431   | (44.0) | 0      | (0.0)  |      | (0.0) | 548  | (56.0) |
| I         | 2678     | 2356  | (88.0) | 0      | (0.0)  | 0    | (0.0) | 322  | (12.0) |
| J         | 253      | 20    | (7.9)  | 0      | (0.0)  | 0    | (0.0) | 233  | (92.1) |
| к         | 2745     | 2475  | (90.2) | 45     | (1.6)  | 0    | (0.0) | 225  | (8.2)  |
| L         | 844      | 505   | (59.8) | 0      | (0.0)  | 0    | (0.0) | 339  | (40.2) |
| м         | 1159     | 1153  | (99.5) | 0      | (0.0)  | 0    | (0.0) | 6    | (0.5)  |
| N         | 912      | 714   | (78.3) | 0      | (0.0)  | 0    | (0.0) | 198  | (21.7) |
| 0         | 1826     | 1029  | (56.4) | 0      | (0.0)  | 0    | (0.0) | 797  | (43.6) |
| Р         | 3146     | 3080  | (97.9) | 0      | (0.0)  | 0    | (0.0) | 66   | (2.1)  |
| Q         | 1697     | 1677  | (98.8) | 7      | (0.4)  | 0    | (0.0) | 13   | (0.8)  |
| R         | 1994     | 1683  | (84.4) | 0      | (0.0)  | 0    | (0.0) | 311  | (15.6) |
| S         | 549      | 537   | (97.8) | 0      | (0.0)  | 0    | (0.0) | 12   | (2.2)  |
| т         | 1241     | 614   | (49.5) | 0      | (0.0)  | 0    | (0.0) | 627  | (50.5) |
| U         | 1175     | 408   | (34.7) | 0      | (0.0)  | 0    | (0.0) | 767  | (65.3) |
| v         | 2981     | 1715  | (57.5) | 0      | (0.0)  | 0    | (0.0) | 1266 | (42.5) |
| w         | 2035     | 1311  | (64.4) | 0      | (0.0)  | 0    | (0.0) | 724  | (35.6) |
| Х         | 2787     | 2762  | (99.1) | 0      | (0.0)  | 0    | (0.0) | 25   | (0.9)  |
| Y         | 881      | 76    | (8.6)  | 805    | (91.4) | 0    | (0.0) | 0    | (0.0)  |
| Total     | 43140    | 32268 | (74.8) | 1620   | (3.8)  | 0    | (0.0) | 9252 | (21.4) |

In the absence of the NHS Number it is difficult to definitively link patients with additional data repositories. PICANet is establishing a linked data set with Hospital Episode

Statistics data. The NHS number is a crucial item of data which will enable long term follow-up and outcomes study of PICU patients.

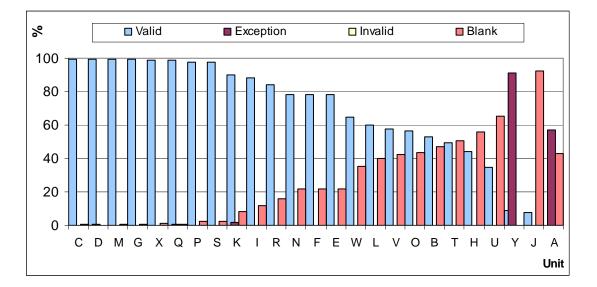



Figure DQ3 Data completeness for NHS number

Over the coming year, PICANet will be implementing the collection of the Paediatric Critical Care Minimum Data Set. The consequences will be a greater volume of data for units and PICANet but the importance of quality assurance processes will remain. A collaborative approach to data quality, with regular and timely feedback from PICANet to units, will ensure that the PICANet dataset remains of the highest standard.

#### 20 A CLINICIAN'S COMMENTARY Dr Gale Pearson

When PICANet was first conceived in the early 1990's the available information suggested that only 40% of intensive care admissions of children in the United Kingdom were to the 28 paediatric intensive care units. The other 60% were looked after in adult / general units or on ordinary paediatric wards. This data came from surveys by the then British Paediatric Association (now the Royal College of Paediatrics and Child Health). In those days (not so long ago) intensive care was delivered to children in so many different sites that it was estimated that these surveys captured at best only 80% of child ICU 'admissions'. The data suggested that the average PICU had 3.6 staffed beds and had only 236 admissions per year. 22% of PICUs had no consultant in their employ with a special interest in the care of critically ill children. Outcomes were not monitored and not included in the surveys so no risk adjustment model could be applied to the data. A later study that did use risk adjustment (published in 1997)<sup>2</sup> compared a representative sample of the British system (in Trent) with a more centralised system (Victoria, Australia).<sup>3</sup> This study made the strong suggestion that such fragmentation of the intensive care service for children was associated with a prohibitive excess mortality. At the time most doctors wishing to train in paediatric intensive care spent the most significant parts of their training abroad.

By the time PICANet started collecting data, the team had validated the available risk adjustment models against British data and much more of the clinical care was already being provided in designated paediatric intensive care units by specialists in paediatric intensive care. The centralisation of care had largely been achieved by the expansion of 'lead centres' as a result of the recommendations of a national coordinating group. The clinical advisors to this group had also strongly endorsed the formation of PICANet. As a consequence PICANet data postdates the shift in service provision of the late 1990's and PICANet cannot report on any effect that the changes may have had. However I would assert that PICANet has been part of a substantial improvement in paediatric intensive care standards and that it has an enormous potential for future contribution. This is firstly because audit is an essential component of good clinical practice. Units that don't audit their performance are arguably not providing a good guality of care. The PICANet audit is as scrupulous as it can be (within budget) in terms of data collection, validation and analysis. Thanks to PICANet we now work in an era where the public, commissioners, providers and patients can all be reassured that the risk adjusted performance of the PICUs in England and Wales is monitored and has remained acceptable (within statistical confidence limits) for the past three years.

More children receive intensive care now, than at the time of the British Paediatric Association surveys. In the years for which data are presented in this report there has also been a small but perceptible continuing increase in the numbers of patients treated in paediatric intensive care units. It is not clear if the threshold for PICU admission across the PICUs is falling, whether there is a continued gravitation of patients to PICUs from general ICUs in referring units or whether intensive care provision is beginning to reach a group of children who always needed it but in the past did not receive it, as was the accusation in 1993. A workload of the order of 14000 admissions per annum in England & Wales is currently distributed between 25 NHS trusts representing 29 PICUs some of which still report very small volumes of activity and others high refusal rates. Nevertheless these figures translate to an average of 563 admissions per trust across the three years (median 443; IQR: 297 – 868). This volume of activity is proving sufficient to provide credible training in the specialty without overseas travel.

PICANet is a clinically conceived initiative, supported by the Department of Health with funding that may soon be channelled through the Health Care Commission. Clinicians (like their public health colleagues, commissioners, government and any patient's advocate) are very interested in bench marking their units and comparing the variety of clinical practice and performance. They need reassurance over the equity of service provision and the opportunity to improve clinical practice through thorough and rigorous research. PICANet provides an unparalleled resource in all these respects and has opportunities to further improve the service that it provides.

### 20.1 Inter unit comparison

Inter unit comparison has become much easier since PICANet dropped the practice of anonymising units in deference to the Freedom of Information Act. Just scanning through the tables in this report we can see that amongst children, the age distribution of patients within our units is largely comparable between units and between years. Although overage (16yrs plus) admissions and admissions in the higher mortality risk groups are more common in the larger / higher volume units. Both trends may reflect different attributes of specialist services in those units such as cardiac surgery. Smaller units also appear to experience much greater fluctuation in the numbers of admissions month by month.

One dramatic demonstration of a clinical difference between our units is the great variation in the proportion of patients receiving invasive ventilation, larger / higher volume units having a greater percentage of invasively ventilated patients. This may be related to the selected provision of specialist services but it could also reflect different relationships between supply and demand in intensive care in different regions. The location of high dependency services also has to be taken into account. If one has spare intensive care unit capacity it is not difficult to envision it being used to provide high dependency care (in which case the effect on the performance analysis is to improve the risk-adjusted outcome). PICANet could compensate for this latter effect by comparing risk adjusted outcome data for invasively ventilated patients as a separate group in the future.

PICANet usefully presents two types of standardised mortality, in funnel plot format, against the number of admissions per unit per year. The first is unadjusted by severity of illness, the standardisation being merely against the average mortality in the data. Some units (including the one where I work) appear close to or outside the confidence limits in this respect. In the second plot these figures are adjusted to account for the severity of illness at presentation. Pleasingly risk adjustment corrects for apparent outlying behaviour. Nevertheless where these effects persist year upon year it remains for these units to reassure us with clinical explanations as to how their case-mix ends up with greater proportions of high risk patients and for PICANet to look for other explanations within the data. PICANet has formal procedures for these sort of 'quality assurance' enquiries that have been tted in earnest at least once since it was formed.

## 20.2 Equity of provision

PICANet only collects information on children who are admitted to the units participating in the audit. This includes all the PICUs in England and Wales and the PICU in Edinburgh. In the future the addition of data from the unit in Glasgow will provide more comprehensive cover of activity in Scotland. However significant numbers of children still receive care in adult / general intensive care units. Some of these contribute outline data to PICANet but despite our best efforts these units do not yet supply risk adjusted data to the audit. There

have also been observations during the PICANet era that large numbers of children have been turned away from the PICU of first referral in some regions (such as the West Midlands where I work). Certainly the data cannot yet reassure us that all those children who require intensive care in fact receive it, at all or in a timely fashion. The presentation of data with geographical denominators rather than inter-unit based comparison is the way forward in this respect, especially the presentation of patient flows. The real opportunity to pin this subject down will come from the analysis of the 'Referral and retrieval dataset' which is now being introduced as an addition to the core data collection.

#### 20.3 Research

PICANet enjoys a close and productive association with the Paediatric Intensive Care Society Study Group. Notable examples being the epidemiological analyses of traumatic brain injury, ethnicity and the analysis of seasonal respiratory admissions in the under ones (which was used to advise the joint committee on vaccination and immunisation on the timing of active immunisation programmes against respiratory syncitial virus). PICANet is a well tapped resource, providing services which include baseline data and denominators, power calculations for clinical trials and the opportunity to act as a vehicle for comprehensive data collection. This latter facility has also been used to allow units the facility to easily collect the paediatric critical care minimum dataset (part of 'payment by results') which will be necessary from October 2007. PICANet also contributes to the academic field of risk adjustment in health care services audit with notable current projects being latent class analysis to evaluate the impact of missing data on apparent performance and the development of techniques which will allow faster feedback to participating units on their performance within clinically useful timeframes. In common with the Australia and New Zealand Paediatric Intensive Care Society these faster feedback approaches will use CUSUM based techniques such as sequential probability ratio testing.

In summary I think PICANet is a tremendous achievement and should act as a great reassurance to patients and their parents in an environment where public faith in the NHS is continually shaken. The audit has enormous clinical support and is a great resource that is just starting to realise its potential. I look forward to a productive relationship with the Health Care Commission.

#### Gale Pearson

## Chair of the Clinical Advisory Group of PICANet

#### 20.4 References

- 1) Freedom of Information Act 2000. [Online] [Accessed 05/06/2007] Available from the World Wide Web at http://www.legislation.hmso.gov.uk/acts/acts2000/20000036.htm.
- 2) Shann F, Pearson G, Slater A, Wilkinson K, Paediatric index of mortality (PIM): a mortality prediction model for children in intensive care. Intensive Care Med 1997; 23:201-207.
- 3) Pearson G, Shann F, Barry P, Vyas J, Thomas T, Powell C, Field D. Should paediatric intensive care be centralised? Trent versus Victoria. Lancet 1997; 349: 1213-1217.

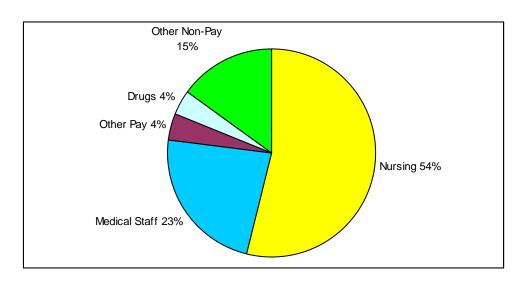
#### 21 THE PAEDIATRIC CRITICAL CARE MINIMUM DATASET (PCCMDS), HEALTHCARE RESOURCE GROUPS (HRGS) AND PAYMENT BY RESULTS (PBR) Dr Kevin Morris

Healthcare Resource Groups (HRGs) have been used for a number of years as a way of classifying diseases and interventions, in relation to the amount of healthcare resources that they consume. HRG Version 3.5 has been in use since October 2003. The latest update (Version 4) is very important in assisting the Department of Health in implementing Payment by Results (PbR). An Expert Working Group (EWG), under the Chairmanship of Dr Nick Griffin, working on Version 4 HRGs for Paediatrics, identified the need to consider how Paediatric and Neonatal Intensive Care could be included. The NHS Information Centre established two further EWGs to take this work forward.

The Paediatric Critical Care EWG was established in 2004, chaired by Dr Nick Griffin, with lan Hughes as Project Manager. Membership (Appendix L) included medical and nursing PIC and HDU representatives, commissioners, an NHS Finance director, PICANet, casemix consultants and Professor Stuart Tanner, representing the Department of Health. The EWG was charged with defining a Paediatric Critical Care Minimum Dataset that would in turn define a number of HRGs. In contrast to most HRGs, which are applied to a complete hospital episode, it was acknowledged that a daily HRG would be appropriate for all critical care episodes, whether neonatal, paediatric or adult. The EWG was also asked to include HDU levels of care, as distinct from the adult critical care dataset, which specifically does not include HDU or Level 1 patients.

Early discussions identified the lack of an existing system that was validated and could be easily adopted. A number of candidate approaches were discussed which included:

- 1. use of a Therapeutic Index Scoring System (TISS) or the recently published 'improved TISS', called the Nursing Activity Score (NAS), which in adult critical care has been shown to be a useful predictor of resource use,
- 2. a system based on further development and refinement of the existing PICS Levels of Care,
- 3. a system based on the number of organ system supports used, the system adopted for adult critical care HRGs.


The PICS Levels of Care have proved to be of value in defining PICU patient dependency, but have not been evaluated as a tool for measuring resource use and in their current form are not precise enough to reliably assign a level of care.

As 75-85% of costs associated with critical care are staff costs, it was agreed that it would be useful to collect information relating patient factors to use of staff resources. An observational study was undertaken in 10 PICUs, to evaluate the three models discussed above against the staff resource consumed by each patient. Observers were present for six hours and recorded the PICU staff present at each bedspace every 10 minutes. They also recorded the seniority of each staff member, in order to assign a cost, and included nursing staff, medical staff, technical support staff and physiotherapists. They did this for three days in succession and completed three blocks of three days separated by 3-4 weeks. For the same observational period of three months, shift by shift data was collected on the number and types of intervention, diagnosis, the number of organ supports and the Nursing Activities Score. The NHS Casemix team undertook a detailed statistical analysis of each approach and how well it predicted staff resource use. Alongside the observational study, each PICU provided detailed bottom-up costing for the financial year 2005/2006. The 10

PICUs involved were selected to include a mixture of large, intermediate and smaller units and those with single multidisciplinary units and those with split site working.

#### 21.1 What were the findings of the observational study and the costings exercise?

The costings study found that 83% of PICU costs were related to staff costs, with the single largest cost being nursing costs (Figure PCCMDS1).



## Figure PCCMDS 1 Breakdown of costs for each PICU

#### Note: Data shown is mean value for 10 units

The Nursing Activities Score was found to be a poor predictor of staff resource use, as was the adult HRG model based on the number of organ systems supported.

A decision was taken to build up a system of HRGs based on a further refinement of the 'Levels of Care' approach. Allocation of a particular intervention to an HRG level was informed by the information available from the observational study – an intervention shown to be associated with a high staff resource being placed in a higher HRG category.

Considerable discussion took place regarding HDU levels of care. Whilst there are a number of existing systems that have been developed for HDU, a number of the data items that are included lack objectivity and cannot be measured in all patients. An absolute requirement for any item to be included in the minimum dataset is that it must be objective and measurable. An example would be the need for greater than 60% oxygen. This cannot be reliably quantified in an infant receiving supplemental oxygen via nasal cannulae. It was therefore necessary, in some situations, to modify a data item to make it acceptable for inclusion.

A key attribute of HRGs is that they are setting independent, that is to say, they apply whether the child is in a PICU at the time or in HDU or in a ward area. If a ward area collects the Paediatric Critical Care Minimum Dataset and identifies that an episode of critical care has occurred, then the relevant HRG will apply to that episode and in the future will be reimbursed under PbR.

#### 21.2 What system of HRGs was chosen?

A system based on 7 HRGs was proposed:

HRG1 – High Dependency HRG2 – High Dependency Advanced HRG3 – Intensive Care Basic HRG4 – Intensive Care Basic Enhanced HRG5 – Intensive Care Advanced HRG6 – Intensive Care Advanced Enhanced HRG7 – Intensive Care – ECMO / ECLS

To define these levels, a Paediatric Critical Care Minimum Dataset of 32 items is necessary. To take account of the additional staff costs associated with nursing a patient in an isolation cubicle, this is included in the dataset. A list of medical conditions that define the need for isolation is also needed (based on ICD 10 codes). The HRG level assigned to a patient increases by one level if the patient is recorded as nursed in an isolation cubicle **and** having a relevant ICD 10 diagnosis that justifies isolation.

Further detail on the HRGs with the interventions that map to each level is shown in Appendix M.

Across the 10 PICUs in the study, the breakdown of cases over a three month period of activity data collection is shown in table P1.

| HRG level  | HRG category                         | Approximate percentage<br>of patient activity |
|------------|--------------------------------------|-----------------------------------------------|
| HRG 7      | Intensive Care - ECMO / ECLS         | 1                                             |
| HRG 6      | Intensive Care, advanced<br>enhanced | 5                                             |
| HRG 5      | Intensive care, advanced             | 10                                            |
| HRG 4      | Intensive care, basic enhanced       | 20                                            |
| HRG 3      | Intensive care, basic                | 40                                            |
| HRGs 1 & 2 | HDU                                  | 20                                            |
| -          | No HRG category <sup>a</sup>         | 3                                             |

#### Table P1 Breakdown of cases over three month period, according to HRG level

<sup>a</sup> These cases would not attract a tariff under PbR in the future

An analysis was undertaken of the staff resource costs associated with each HRG. These are expressed as a cost ratio with Intensive Care Basic as the reference HRG with a value of 1.00.

| HRG1 – High Dependency               | 0.75 |
|--------------------------------------|------|
| HRG2 – High Dependency Advanced      | 0.91 |
| HRG3 – Intensive Care Basic          | 1.00 |
| HRG4 – Intensive Care Basic Enhanced | 1.22 |
| HRG5 – Intensive Care Advanced       | 1.40 |
| HRG6 – Intensive Care Adv Enhanced   | 2.12 |
| HRG7 – Intensive Care – ECMO / ECLS  | 3.06 |

It should be stressed that the HDU level data was obtained predominantly within an ICU setting, which could have impacted on the nurse:patient ratio, with a higher nursing input than that delivered to the same patient in an HDU or ward setting.

#### 21.3 How many HRGs will be allocated to a patient?

Each patient will be allocated a single 'parent' or 'core' HRG to cover the episode of hospitalisation. If more than one diagnostic code applies to a patient, the HRG with the highest tariff will apply. For example, a child admitted for cardiac surgery who develops a post-operative pneumonia will be allocated the HRG related to the cardiac surgery.

In addition, a number of aspects of care are 'unbundled' from the parent HRG. These include:

- 1) chemotherapy
- 2) radiotherapy
- 3) interventional radiology
- 4) diagnostic imaging eg MRI
- 5) rehabilitation
- 6) renal dialysis
- 7) critical care (including PICU)
- 8) specialist palliative care
- 9) high cost drugs

The list of all eligible high cost drugs will be updated on a regular basis, but the current list includes many drugs that will be used in PICU (Appendix N).

If the above patient admitted for cardiac surgery spends four days in PICU, is treated with Sildenafil and requires an MRI scan of the brain, then the number of HRGs will be:

Core HRG + 4 PICU HRGs (depending on level(s) required) + High cost drug HRG for Sildenafil + Diagnostic imaging HRG for MRI scan

#### 21.4 What about patient transport services?

Any internal transport of a PICU patient within an institution will not receive a separate HRG and will be covered within the daily HRG.

Currently, retrieval is not included within the HRG classification, but work is ongoing to look at the costs associated with both neonatal and paediatric transport. It is quite likely that transport will form another unbundled category of care to add to the list of nine items shown above.

## 21.5 How will the Paediatric Critical Care Minimum Dataset be collected?

It will be up to individual units and Trusts to decide on how to collect this data. The quality of the data will be important and if no patient data is collected, it will not be possible to be reimbursed under PbR in the future.

The publication of the Dataset Change Notice (DSCN) by the NHS Information Standards Board mandates the providers of IT development, under the umbrella of Connecting for Health, to provide Trusts will the ability to collect the PCCMDS. However, many Trusts are not yet covered by these developments and will need to seek a local solution.

The PCCMDS will be incorporated into the PICANet software, allowing participating units to collect data by this route, if they choose.

Systems must be developed within a unit to ensure complete and high quality data. If an intervention occurs at any time within a 24 hour period, it should be recorded even if it was only started at 23:50 at night. A patient who is discharged at 08:00 should have data collected, as they are eligible for a critical care HRG for that 24 hour period.

Greater difficulty is likely to be experienced in the collection of accurate data in patients who are cared for in ward areas. Cohorting of sicker ward patients into a limited number of HDU areas should both optimise their care and facilitate PCCMDS data collection.

## 21.6 Should a pre-term neonate looked after in PICU or a ward area have the Neonatal Critical Care Minimum Dataset collected rather than PCCMDS?

No, the PCCMDS will be collected for all patients in a hospital environment that predominantly looks after children. Equally, if a 25 year old is admitted to PICU, the PCCMDS should be collected.

#### 21.7 What are the key milestones over the next few years?

Collection of the PCCMDS is mandatory from October 2007. The data that is collected will be analysed alongside costings information provided by Trusts as part of the Reference Costs exercise, to inform the setting of tariffs by the Payment by Results team of the Department of Health. It is envisaged that PICU will enter the PbR arena in April 2009 with tariffs from that point. There is considerable anxiety about the destabilising effect that full implementation could have, with the income of some units potentially cut drastically, so a phased implementation is likely to be considered, with part of a unit's income based on a block contract and part based on HRGs and PbR.

#### 21.8 Will we be stuck with the current HRGs or can they be modified?

HRGs can be modified but there is a process that must be gone through. We are told that the HRG Expert Working Groups will continue to function with this remit. A further 'full' version of the HRGs is undertaken every five years or so.

#### 21.9 How else can we use the PCCMDS data?

#### PICU Audit

For the first time, all units will be collecting data on patients that is focussed on a day rather than a complete PICU episode. This will provide additional information about the epidemiology of critical care, the frequency with which interventions are used, and allow a more meaningful comparison of workload across different units. This information can also be used to allow improved modelling of staff requirements within a unit.

#### Cost information

With the publication of a tariff for each HRG, units will be provided with much more detailed and transparent information about the income that the Trust is receiving for PICU activity and make it easier to breakdown income into certain categories eg private / NHS, in region / out of region. In addition, trials that are examining PICU costs or the cost effectiveness of a particular intervention will be able to use the HRG system and tariffs to calculate PICU costs, which will be a considerably easier methodology.

#### 21.10 Further information

http://www.ic.nhs.uk/casemix http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/ PublicationsPolicyAndGuidance/DH\_062914

#### 22 DEVELOPMENT OF THE RETRIEVALS DATASET Dr Allan Wardhaugh

PICANet have now developed an extended dataset to allow collection of information regarding the retrieval and inter-hospital transfer of critically ill children. This will include collecting data regarding refused retrievals.

Each child who is referred to a PICU participating in PICANet *in whom it is agreed PICU is appropriate* will have data collected. In the event of a patient being refused admission because of lack of beds or lack of staff, a minimal amount of data will be collected, and the episode recorded as a refused admission. If the child is then referred to another unit, a new episode will be generated. The same child may generate several PICANet entries. The example below demonstrates an outline of the data collection.

The data required for a refused admission is minimal – simple patient identifiers, referring unit, outcome of referral. This should take a minimum of time to collect, as the referring unit are unlikely to be keen to spend too much time giving information over the phone about a patient they have not yet found a bed for.

Information will be collected relating to the transfer process, including the type of personnel involved, interventions undertaken during stabilisation and the transport itself, and critical incidents.

PICANet will be able to describe in detail where, when and by whom PICU retrieval is delivered in the United Kingdom. Individual units will receive information on how often, and for what reason, they have to turn away patients referred to them. This will be useful information for future commissioning of services. It may also provide insight into the ways different retrieval service configurations perform in terms of interventions and critical incidents.

The dataset has been developed by Allan Wardhaugh in consultation with members of the National Paediatric Retrieval Group over a period of several months, and was ratified by the group in the Paediatric Intensive Care Society meeting in November 2006. We are now working centrally to develop user-friendly forms and a database extension to allow this data to be collected, and over the course of the next year should be able to write to all PICUs asking them to participate in the collection of this data.

#### 22.1 Example

Gareth Jones is a 2 month old with bronchiolitis admitted to Gloucester Royal Infirmary.

He deteriorates and requires intubation and ventilation. The consultant paediatrician refers him to Birmingham Children's Hospital - they are full. Bristol PICU are contacted – they are full, but are able to retrieve. Cardiff PICU is contacted, and accepts the patient, with the Bristol team retrieving.

On day 2 in Cardiff PICU he deteriorates further and is referred to Great Ormond Street for ECMO. They have a bed, and ask North Thames Childrens' Acute Transfer Service (CATS) to retrieve him.

After his ECMO run, he is referred back to Cardiff, still ventilated, on day 14. He is repatriated by a team from Great Ormond Street.

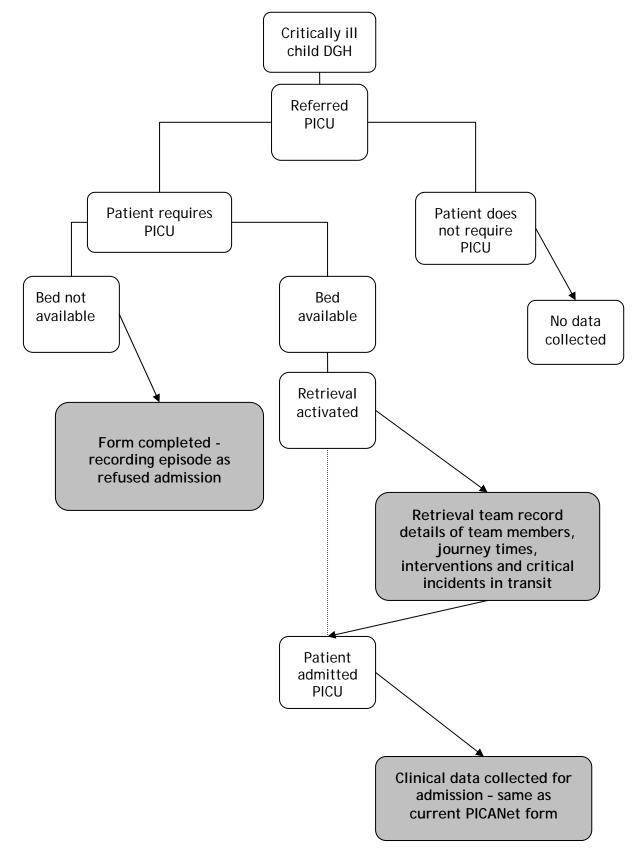
He is discharged from Cardiff on day 18 to his local hospital, spontaneously ventilating.

#### 22.2 Forms completed

| Birmingham Children's PICU | 1 form           | Not admitted – no staffed bed                           |
|----------------------------|------------------|---------------------------------------------------------|
| Bristol Children's PICU    | 1 form<br>1 form | Not admitted – no staffed bed<br>Referral and Retrieval |
| Cardiff PICU               | 1 form           | Referral and admission                                  |
| CATS                       | 1 form           | Referral and retrieval                                  |
| GOSH                       | 1 form<br>1 form | Referral and admission<br>Transfer out*                 |
| Cardiff PICU**             | 1 form           | Referral and admission                                  |

\*This transfer generates a form because he is still requiring critical care. \*\*No transport form for final discharge, as he is not requiring critical care.

This patient with a complicated, but not unprecedented journey, has 8 forms completed and entered into the PICANet database. Under the current system, he would have had only 3 forms – one for the original Cardiff admission, one for his GOS admission, and one for his re-admission to Cardiff following ECMO.


The episodes will appear in the reports issued to each participating service: in Birmingham's report, he appears as a refused admission due to lack of a staffed bed; in Bristol's report, he appears as a refused admission due to a lack of a staffed bed, and as a retrieval; in Cardiff's report, he appears as a referral and admission retrieved by another service on the first occasion, and again as an admission retrieved by another service; at CATS, he appears as a referral and retrieval; at GOS, he appears as a referral and admission, then as a transfer out.

The full dataset has been designed to cover a variety of contingencies reflecting the various service configurations and journey types known to occur, and full discussion of these is beyond the scope of this introduction, but more detailed information will be provided to all PICANet centres closer to the time of introduction.

When the forms are completed and the database extended, the process will be piloted in a few regions, and hopefully then extended nationally after any glitches are sorted out.

The full dataset can be found at http://www.cardiffpicu.com/pages/nprg.html

Figure RET1 Referral, retrieval and PICU admission, the data collection pathway



### 23 PICU HEALTH INFORMATICS Dr Padmanabham Ramnarayan & Dr Krish Thiru

*Medical Informatics* is the name given to the application of information technology and data processing techniques in healthcare. Also referred to as *health informatics* and *bioinformatics*, the discipline deals with how we acquire, store, retrieve and use information, data and knowledge. Although primarily concerned with the flow of information, with the advancement of computer sciences, it has become synonymous with the use of computers in health care. Health informatics plays a particularly vital role in information-rich specialities such as PICU.

With the increase in demand for accurate and timely information by clinicians, managers, commissioners and the Department of Health, UK PICU has been extensively computerised over the last decade. Ever increasing pressure for standardised accurate data is being placed upon PICU (e.g. Payment by Results). In order to ensure that developments in PICU health informatics are systematic and coherent, efforts have been made to establish a *National PICS Health Informatics Group* under the auspices of the Paediatric Intensive Care Society Study Group.

## 23.1 National PICS Health Informatics Group: News update

The goal of shared and collaborative work in informatics across the UK PICU community moved closer to reality with the formation of a Health Informatics Group at the PICS meeting last November. Although the group is still in its infancy, membership is rapidly growing. The Group plans to have its first formal meeting at the 2007 PICS conference at Nottingham where current and planned work will be presented.

## 23.2 PICU Clinical Information Systems Survey

Coming soon to an Inbox near you!

This survey aims to find out how units are collecting, storing and using information. The results will help PICUs in developing a coherent strategy for the implementation of information systems, within and outside the National Program for IT. A web-based survey has been piloted in pan-Thames units. Now the survey is being rolled out to all UK PICUs. You can respond to the survey using one of three response methods. (1) a web-based questionnaire (2) electronic PDF response (3) Printed PDF response to be posted back. Please choose the easiest method for you.

## 23.3 SNOMED PICU Subset Development Project

The National Programme for Information Technology (NPfIT) has been hailed as the largest civilian IT project in the world, and it is going to change your life (or ruin it, depending on who you speak to)! The Informatics Group has been actively engaged in raising the profile of PICU with Connecting for Health. Our first piece of collaborative work is the SNOMED subset development project.

## 23.4 What is SNOMED-CT?

Clinical terminologies such as Read Codes (used in PICANet to collect data on diagnoses, procedures etc.) evolved out of the need to ensure standardised recording of electronic information and accurate retrieval of stored clinical data for audit and research.

The Systematised Nomenclature of Medicine- Clinical Terms (SNOMED-CT or SCT) is an evolving clinical terminology which aims to be the most comprehensive terminology for medicine. SCT which encompasses all current Read codes, is intended to be the *de facto* standard within NPfIT, which means that all coded information in the future will be need to be recorded as SCT terms rather than Read Codes or any other classification system. As a result, SCT will have significant implications on how we collect information for the Paediatric Critical Care Minimum Dataset (Payment by Results), PICANet, and any NHS IT systems developed for PICU.

#### 23.5 What is a SNOMED subset?

SCT contains >400,000 unique concepts, and 1 million synonyms. It will be timeconsuming, and almost impossible, for PICU staff to browse and find the right SCT term(s) to record clinical information. A SNOMED subset is a "cut-down" version of SCT relevant for each speciality. A PICU subset will only contain SCT terms relevant for PICU, making it easier to find the right term to represent each piece of clinical information. The informatics group has proposed a study methodology for subset development to ensure that the subset is comprehensive for PICU needs, and overlaps with related fields such as cardiology. For further details on the methodology (presented at the PICS SG recently) and how PICANet data is being used to drive subset development, please visit http://www.informatics.nhs.uk/.

## 23.6 Why develop a subset?

This is a significant project with far-reaching implications for our community. We need an effective and efficient subset of terms so that data collection in the future is easy and accurate. An incomplete or poorly conceived subset will make accurate data collection and retrieval in the future difficult and ineffective. We are actively looking for clinical input into this project and would welcome interested parties.

If you are interested in becoming involved in any of the activities detailed above or are thinking of developing a research and development study in this area of work, please contact Dr P Ramnarayan (RamnaP@cats.nhs.uk), Krish Thiru (ThiruK1@gosh.nhs.uk), or Stuart Rowe (stuart.rowe@nhs.net).

## 24 UK PICU STAFFING STUDY Dr Dawn Coleby & Ms Namita Srivastava

#### 24.1 Background

The UK PICU Staffing Study aims to look at the patterns of staff working in Paediatric Intensive Care Units, and how this impacts on staff wellbeing and patient outcomes. We are undertaking fieldwork in 12 PICUs across the UK, focusing on extended nursing roles and comparing PICUs where such roles are more or less well-developed.

Objectives include exploring extended nursing roles in PIC, and testing the impact of extended roles in relation to direct patient care time, quality of care and staff wellbeing. Additionally units with higher and lower extended roles are also being compared to explore workforce context, human resources management strategy (HRMS), and staffing costs.

#### 24.2 The 3 different phases of the study

The UK PICU Staffing Study is organised into 3 phases.

Phase 1 was completed in December 2005, and involved a survey of all PICUs. This provided information on the skillmix and the types of tasks undertaken by nurses within each PICU. The information was then used to categorise all units and randomly select 12 to participate in the next phases of the study (6 with well-developed extended nursing roles and 6 with less well-developed extended nursing roles).

Phase 2 involves visiting the 12 participating units, collecting unit profile information and observing nursing staff. Information on direct patient care time is collected by observing nursing staff as they work and by asking the nursing staff to complete a summary shift diary. This requires the nurses to estimate and record the percent of time they spend on certain tasks, during the observed shift. This part of the study also involves staff interviews to explore their experiences and views on staffing issues. HRMS, staffing costs and unit context are determined by staff interviews, unit profile questionnaires, and further data from phase 3.

Phase 3 is the final year- long prospective stage of the project.

This phase requires the shift leaders in each unit to complete a regular workload log. The workload log records twice-daily the number and skill-mix of staff on duty to provide clinical care and the number and illness severity of patients in the unit. Patient outcomes will be ascertained from PICANet data and cases of probable ventilator associated pneumonia (VAP) will be collected from clinical notes by research link-nurses. VAP is an important new outcome of the study because it is an infection that is acquired inside the PICUs. This data is collected in each participating unit by a trained research link-nurse or clinical research fellow.

Finally, parent/child interviews and a staff well-being questionnaire are also undertaken during this phase. The user interviews are designed to capture the views of the parents and some children with regards to the care they received in the PICU. The staff well-being questionnaires are designed to capture staff views of their workplace unit and the processes in place for ensuring health and safety of staff and supporting their wellbeing.

#### 24.3 Progress phase 2

#### Observation data

Observational data is collected on nurses shadowed by our researcher for 2 hours during a typical 12 hour shift. The researcher records the tasks that the nurse undertakes. 4 or 5 nurses are observed at each unit (mostly band 5 or 6). Any other staff that attend the patient's bedside and that are involved in providing care are also noted. The majority of the observations are undertaken during the day, but one observation per unit is undertaken during a night shift. Because casemix of the patients being cared for by the observed nurses clearly may influence nursing activity, diagnosis of those patients is also recorded. Additionally, all nurses on shift during observations are asked to self-report activity by completing a simple end-of-shift summary diary. Once completed the observational data and summary shift diaries are used to estimate the amount of direct patient care time the nurses undertake in each unit.

#### Interviews with staff

In order to explore a broad range of perspectives on staffing issues within PICUs, staff are selected in each unit representing different levels of seniority. The aim is to interview, within each unit, the Clinical Director, Nursing Manager, one staff nurse (band 5/6) and one junior doctor (SHO or Registrar). Some appointments with senior staff are made prior to the site visit, while most junior staff are approached during the site visit, and interviews are conducted as convenient to both parties. There have been relatively few problems so far in obtaining consent for and then conducting staff interviews within units. Staff are generally willing to discuss issues openly, and an interesting set of diverse opinions and experiences are being explored.

#### Unit profile

The unit profile questionnaire is given to the nursing managers before the site visit, so that the researcher can take the completed questionnaire back to the study centre after the visit. However, if the unit profile is not completed during the researchers site visit, units can fax the completed form to the study centre in Leicester at a later date.

#### 24.4 Progress phase 3

Ventilator-associated-pneumonia (VAP) link-nurse recruitment and training

Nursing managers at each unit were asked to identify a suitable member of nursing staff to undertake the VAP data extraction. Once the research link-nurses were identified, two training sessions were arranged to show the link-nurses how to complete the data extraction form. Thus ensuring consistent completion between units. The research link-nurses were asked to start data collection on 1st March 2007. All link-nurses attended one of the training sessions and a training manual was supplied.

#### Interviews with parents and children

The study aims for a total of 36 interviews with parents with a subset of 10 parent-child paired interviews. We also aim to obtain a cross-section of children's reasons for admission and length of stay within the sample. Parents are approached during the researcher's site visit – in practice this is on an ad hoc basis depending on parent availability and also stability of the child which can determine suitability of parents for interview.

#### 24.5 Outstanding work

Phase 2 is nearly complete. The staff at unit visits have been extremely welcoming and helpful, contributing to successful and informative site visits. Thank you to all the staff who have given us their time. All the information we are collecting in phase 2 provides important information on the nursing roles and how the team works together in each unit.

Phase 3 is now underway in all 12 PICUs and will be ongoing until March 2008. The research link-nurses have begun extracting information to detect probable Ventilator Associated Pneumonia from clinical notes on behalf of the project. Because VAP is an important outcome of the study it is important that this data is collected accurately and consistently between units. The study is therefore indebted to the research link-nurses for collecting these data on our behalf. Progress so far shows that the VAP data extraction is well underway in most units, with forms completed and returned regularly to the study centre.

In addition to the VAP data collection, participating units are also completing workload logs. The workload logs are being returned to the study centre regularly with the VAP forms by the link research nurses. We are pleased that most sites are returning logs that have been completed fully.

The staff wellbeing postal survey will be taking place in summer and autumn of 2007.

Acknowledgements Investigators Dr. Janet Tucker Dr. Elizabeth Draper Dr. Dawn Coleby Ms. Namita Srivastava Prof. Lorna McKee Dr. Diane Skatun Dr. Mark Darowski Dr. Gareth Parry

The project is funded by NHS R&D Service Delivery and Organisation Programme (Grant number SDO-96-2005) and is being undertaken by researchers from the Universities of Aberdeen, Leicester, Harvard, USA and Leeds Teaching Hospital Trust in collaboration with PICANet.

Contacts: Dr Dawn Coleby (dc55@le.ac.uk) and Ms Namita Srivastava (ns161@le.ac.uk), University of Leicester, 22-28 Princess Road West, Leicester. LE1 6TP. Tel: 0116 2523200.

Project Website: http://www.abdn.ac.uk/dugaldbairdcentre/projects/PICUStaffing.shtml.

## 25 SPECIALISED COMMISSIONERS PERSPECTIVE ON PICANet Dr Corinne Camilleri-Ferrante and Ms Roz Jones

#### 25.1 Introduction

In order to gain an understanding of the use of PICANet to inform commissioning decisions, Specialised Commissioners from the North West and the East Midlands were asked to answer the following questions:

- (a) Is PICANet useful to Commissioners?
- (b) How could PICANet be developed in the future?

In capturing the Commissioners' perspective on PICANet, the two commissioners sought views from Paediatric Intensive Care Commissioners within England to collate this section of the annual report.

#### 25.2 The Context of Commissioning Paediatric Intensive Care

Paediatric Intensive Care (PIC) services are commissioned under Specialised Commissioning arrangements and are defined under the Specialised Services Definition Set, second edition, number 23, 'Specialised Services for Children'. The definition covers all activity relating to:

- Level 2 and 3 PIC units as per Framework for the Future, 1997<sup>1</sup>
- High Dependency Care provided within the tertiary setting
- Children requiring long term respiratory support if cared for in the tertiary centre
- PIC retrieval services for critically ill children
- Paediatric burn services. It is recognised that the National Burn Care Review recommends that paediatric burns cases require access to appropriate paediatric intensive care.

In response to the recommendations of the '*Review of Commissioning Arrangements for Specialised Services*' (the Carter Review) (May 2006)<sup>2</sup> these definitions are currently under review.

Over the last decade, national policy initiatives have been introduced, such as payment by results (PbR), Choice, the establishment of new Foundation Trusts, Independent Sector Treatment Centres and Practice Based Commissioning. In addition access waiting times, particularly the introduction of the 18 week target, are now key performance measures. All of these influence commissioning decision-making processes and priorities.

These initiatives will have a limited effect on the commissioning of PIC services; the majority of paediatric intensive care is unplanned and not influenced greatly by patient or GP choice. The impact will be felt in those areas, such as elective surgery, requiring PIC support where limitations in the numbers of PIC beds available could have an adverse effect on waiting times and other parameters. This can be a particular problem at times of high activity where pressure on PIC beds can be acute.

The Carter Review made a number of recommendations on commissioning arrangements for specialised services. The main recommendations which may have an impact on Paediatric Critical Care services are as follows:

- **Recommendation 14: Access to Patient Activity Data** Commissioners should have access to patient activity data in the national database for all services which are commissioned collectively.
- **Recommendation 17: Designation of Specialised Services Providers** The designation of units according to the agreed service specifications and standards which will be worked up by commissioners in partnership with clinicians and users of the service.
- **Recommendation 22: Specialised Services National Definitions Set -** The review of specialised services definitions which may widen or narrow the scope within the children's definition, number 23 which includes paediatric intensive care and high dependency care delivered within the tertiary centre.
- **Recommendation 23: Payment by Results -** Payment of activity through the payment by results mechanism for activity within those designated centres.
- **Recommendation 24: National Clinical Databases** The National Specialised Services Commissioning Group should consider proposals to establish and maintain national clinical databases for specific specialised services to enable commissioners and providers to monitor clinical outcomes and performance against standards. Annual funding should be sought from the Department of Health as part of the programme to strengthen commissioning, with a supporting contribution from Specialised Commissioning Groups.

The Carter Review states that 'activity at undesignated providers should not be funded by commissioners.'<sup>2</sup> In preparation for payment by results, standardised data have been identified by way of a minimum data set for paediatric critical care;<sup>3</sup> these have been developed by Information for Health and Social Care to support the operation of new paediatric health resource groups (HRGs) which will form the component parts of the packages of care to payment by results (PbR). This data set must be collected in the Commissioning Data sets from 1<sup>st</sup> October 2007 (with optional collection from 1<sup>st</sup> April 2007) in preparation for paediatric critical care is a high cost, low volume service whose case mix and activity levels are not necessarily related directly to normal commissioned activity. There are features of HRG version 4 that include the concept of 'unbundling' high cost elements; this should allow better representation of activity and cost of specialised services in order to ensure recognition of priority areas.

As well as developing HRGs, the data from the Paediatric Critical Care Minimum Data Set (PCCMDS) will inform service delivery. It is, therefore, fundamental that there should be no duplication with PICANet data collections. PICANet are developing the necessary software to collect PCCMDS for PICUs; it should then be possible to export a file for the Trust's use. This will reduce the burden of data collection, but will leave the responsibility for making the return to the individual Trust. Some additional funds may be requested to assist in this.

#### 25.3 Commissioners views on the usefulness of PICANet

Overall Commissioners reported PICANet information to be extremely useful. Annually, the data collated provide Paediatric Intensive Care services with a clearer understanding of the size and nature of the service, by way of information based on professional standards and agreed definitions. They provide an insight into changes in case mix by geography and time, together with a national benchmark to compare local service provision. From a local and national perspective the data, when analysed in line with

professional guidance and research, provide a strategic overview to inform service viability and future planning intentions.

As always, data are only as useful as they are timely and accessible. Using the data also helps to ensure that they are accurate. Commissioners would find direct access to PICANet data most useful, without the need for permissions from the clinical leads of the various units. Our need for comparative analysis means that we often wish to compare with units not directly within our sphere of influence, and this is aided by a more open attitude. We applaud the fact that all units were identified in the last report and would urge that we have open access to data with a minimum of red tape.

An example on the use of PICANet data to inform planning decisions is shown below in boxes 1 and 2:

Box 1 - Paediatric Intensive Care Review within the East Midlands and South Yorkshire Region.

The review of PIC undertaken by East Midlands and South Yorkshire was completely underpinned by PICANet data. Commissioners requested, and received, timely and comprehensive data on the three units which were being reviewed. Commissioners were able to identify some errors in the data relating to the number bed days reported. PICANet reviewed this and it was found that two patients had no discharge dates recorded which skewed the data. Comparative analysis of the data from the three units showed interesting differences which have underpinned recommendations and planning assumptions.

#### Box 2 - Paediatric Intensive Care Review within the North West Region

Within the North West, a review of PIC within the Royal Manchester Children's Hospital and Royal Liverpool Children's Hospital was undertaken to assess the current utilisation of resources against best practice and to make recommendations regarding future capacity plans. The PICANet service provided a rapid response to requests and was easy to access. Information with regard to case mix and activity throughput was gained from annual report data, but the majority of information within the report was sought via specialist requests separately commissioned:

- Bed census in comparison to bed day information to identify patient throughput/efficiency
- Patient inflows (Non North West) and outflows (North West) by specialist centre (PICU) to assess specialist referrals, general emergencies or unmet need. In order to identify the names of the PICUs, authorisation was sought from the relevant lead clinicians. Of the PICUs accessed, all but one unit provided approval.

The review data collection would have been smoother if the PICANet service held data with regard to services that are interdependent on PIC such as high dependency, long-term ventilation and level 3 burn care. These data were collected manually from the two providers to ensure a better understanding of step up/down care and to identify any blockages within current patient pathways.

The main comment from Commissioners concerned the restriction in local access to PICANet clinical data. At the moment apart from the annual report, or local permission from lead clinician to see individual unit reports, the process to gain data is as follows:

- (1) Commissioner completes data request form
- (2) Lead Clinician from PICU is asked for authorisation to release data

- (3) If authorised, PICANet prepare data
- (4) If additional analysis is required funding is requested to undertake this work

This raises the question of who should own the data ?

The service is funded by the Department of Health who established a legally binding agreement with PICANet. This outlined that the PICANet data and intellectual property rights are owned by PICANet. The forum for steering the scope of the work that PICANet undertakes is through the National PICANet Steering Group and Clinicial Advisory Group which is represented by Lead Clinicians and Commissioners.

From the perspective of Commissioners, there needs to be assurance that aggregate (not patient identifiable) data from all parts of the country will be available in a timely manner. This will ensure that Commissioners are able to make sensible and consistent planning decisions based on population need not on historical accident. PCT level analysis does not require patient identifiers to be included in reports, but those reports can only be produced by someone who has access to patient identifiers. The issue of future access and ownership of patient identifiers needs to be clarified and very clearly understood.

Consistency within data definitions across units is extremely important and is not being achieved at present. Examples of this include definitions of planned care (where National Confidential Enquiry into Patient Outcome and Death (NCEPOD) definitions could be used consistently across the country) and assessing complexity of care within units. This last point is very subjective, with a number of different methods in use (e.g. staff to patient ratios or organ dependency via the augmented care dataset). A decision needs to be taken as a matter of some urgency exactly which tools will be used and their exact definitions. Consistency of use across the country then needs to be audited.

As well as levels of care, Commissioners would like PICANet to include GP practice codes within the data set so that the commissioning PCT can be identified. This information is fundamental in grouping HRG activity in order to apply the payment by results charging mechanism.

Within the current data collection, it is very difficult to identify activity through the whole of the patient pathway. Current data collections do not account for the full journey of the patient. Data are shown for the PIC episode of care, with the result that delays in discharge, or bottlenecks within the step up/down pathway, are difficult to identify. This is important as current information systems do not link the interdependent services, such as High Dependency Care, Long Term Ventilation and level 3 burn care, to ensure appropriate access and maximum utilisation of PIC resources. Furthermore, data links with primary care and local authority child services would inform further intelligence on correlation between PIC admissions and deprivation.

Over the last decade, lead centres have experienced an increase in referrals from local District General Hospitals (DGHs). This is in part due to changes in the anaesthetic guidelines, which resulted in a change in surgical practice where all children under three years old are referred to the specialist centres for surgery. If the PIC is full, this will increase cancellation rates for surgery and thus have an impact on the Trusts' requirement to meet the 18 week target. An example of the impact of this surgical shift within the Pan Thames Consortium area is shown below in box 3:

### Box 3 – Surgical Shifts within the Pan Thames area

As a consequence of the changes in national anaesthetic guidelines affecting the level of experience required to care for children under three years old on clinical governance grounds, a number of DGHs in North Thames decided it was unsafe to continue performing surgery on younger children. This required patients to be transferred to the tertiary centre for surgery. In addition, due to the local centre not being able to provide high dependency care a number of patients were transferred to the lead centre by a transport team for stabilisation overnight and then back to their local DGH. A subsequent analysis of activity flows identified that out of 22 overnight stays, 11 could have remained in their local DGH if sufficient HDU cover was available at this time.

Data on outcomes are extremely useful in assessing the service delivery and needs of a particular population. Inevitably, however, these data are limited. Mortality data are a blunt instrument, with limited usefulness. Morbidity outcome data would be extremely useful, but collecting them in a meaningful way presents many problems. Some thought to surrogate outcome measures which could be used and which would not be too onerous to collect would be most welcome.

Finally, current data with regard to PIC transport is very limited, only covering the fact that a retrieval/transfer has taken place, from what source and who undertook the transfer. It would be helpful to understand which geographical area and Trust patients have been transferred from, and whether it was a planned specialist referral, emergency referral or other. This would help to inform PICU capacity.

# 25.4 Commissioners thoughts on how PICANet could be utilised more efficiently and developed in the future

Commissioners provided the following suggestions on how PICANet could be developed to aid in decision-making and to work in line with National Commissioning guidance:

#### 25.5 Access to data

Commissioners would like to be able to access data regionally in order to undertake local analysis. This could be achieved where access is approved for one person from each Specialised Commissioning Group; data would be password protected with read only access that could be downloaded. Access to detailed local data would be extremely useful.

#### 25.6 Quarterly Reporting

Commissioners would find quarterly reports useful. Key performance indicators could be agreed and reported showing the local position in comparison to the national picture. In addition, exception reports showing national variances in trends would be useful.

#### 25.7 Strategic planning from a National perspective

Commissioners need to make more use of PICANet data to inform national or subnational level strategic planning. This could lead to the development of a national database of bed state which if supported could provide ongoing information on national bed capacity which would in turn inform local transport provision. Consideration should be given to a real time bed state system which links to the PICANet data set. This should be considered by the National Specialised Services Commissioning Groups.

## 25.8 Commissioning the patient pathway

In line with national guidance, Commissioners would like PICANet to incorporate paediatric high dependency care, long term ventilation and level 3 burns. Ideally, this would include data from outside tertiary centres, although the difficulties of data collection are recognised.

The planning process for PICANet to date has often been focussed on dealing with the complexities involved with the collection and storage of the audit data. The new PCCMDS and HRGs will allow the collection of a more complex range of information by specialty to be collected. Now that this stage of the development of the system is well established, this presents an opportunity to focus more on the analysis and future use of the information that is being collected.

## 25.9 Integration of PICANet information with Connecting for Health

At the moment PICU units provide PICANet information via a database. Information is then exported to a secure server behind the Leeds Teaching Hospitals Trust firewall and accessed via a secure connection by the PICANet team at Leeds University. If data were included within the Connecting for Health IT infrastructure wider information searches could be carried out and there would be less need for individual, different analyses.

#### 25.10 Capturing data on PIC Transport

Commissioners recognise the difficulties associated with capturing data on PIC transport. However, information that allows a better national, or at least regional, picture would be most helpful. Currently, most PICs collect their own data but the system often does not have information on what happens to children who are refused. Collecting the data over wider areas would help to identify pockets of poor provision. This has been recognised within the PICANet work programme where a retrieval data set has been developed by Dr Allan Wardhaugh in consultation with members of the National Paediatric Retrieval Group. This was then ratified at the Paediatric Intensive Care Society in November 2006. This will be piloted in 2007 within a number of agreed sites. Further information can be found within Dr Wardhaugh's chapter in this report

#### 25.11 Conclusions

- Commissioners identify PICANet as very useful.
- The PICANet team are consistently helpful and approachable.
- Information is provided in a timely manner and communication through the annual reports, individual provider reports and yearly conference is a vital part of the planning process which informs commissioning intentions.
- Accessibility and quality of data are key ownership; consistency in the providers' interpretation of the data definitions; data required to plan the patient pathway; and the need to access information not just focusing on PICU but on the impact from referring units as a result of changes within professional guidance.
- Commissioners do not need patient identifiable data but data that will ensure a sensible consistent approach to planning decisions based on population need not

historical accident. Data fields could usefully be extended to incorporate levels of care (staff to patient ratios as per PICs Standards 2001), PCT practice code, wider data set to capture the whole of the patient pathway, and additional information with regard to PIC retrievals.

- The change in casemix within PICUs, together with national guidance, has resulted in a change in practice. Intelligence therefore needs to be sought not just from the tertiary children's centres critical care activity but also from the referring units. Therefore, in the future, PICANet must be linked with wider national data sources and not viewed in isolation.
- PICANet needs to be closely involved in the design and development of any future audit framework. The Department of Health has acknowledged (via the consultation on the commissioning framework) that further research into outcomes measurement is required. This discussion needs to involve clinicians and commissioners working collaboratively.
- Commissioners need to utilise PICANet data better to inform national and subnational strategic planning

#### 25.12 Recommendations

- PICANet is a valued resource and should be maintained and expanded.
- Commissioners should be seen as major stakeholders in PICANet and as such continue to be a party to discussions about its future.
- Ready access to data is fundamental to the data being used by commissioners. As such, consideration should be given to the idea of an identified commissioner within each of the Specialised Commissioning Groups to link with PICANet and to have automatic access to the data.
- All national data should be accessible to commissioners. Their greatest use lies in being able to make valid comparisons, not in having local data.
- Data on PCT would be most useful.
- Data on levels of care, including HDU, would ideally cover more than just the tertiary centres, although we recognise that this would be challenging.
- In the light of all the above, commissioners may be prepared to contribute some funding to assist in an increased data set.

#### 25.13 References

- 1) Department of Health, Health Services Directorate, July 1997, Paediatric Intensive Care "Framework for the Future"
- 2) Review of Commissioning Arrangements for Specialised Services, May 2006. An independent review requested by the Department of Health
- 3) DSCN Notice: 01/2007 Version 3.0 [Online] [Accessed 05/06/2007] Available from the World Wide Web at http://www.connectingforhealth.nhs.uk/dscn/dscn2007.

#### 26 USES AND DISSEMINATION OF PICANet DATA

PICANet was established in collaboration with clinical colleagues from all participating NHS trusts, with a view to providing timely and accurate national and local information on PICU activity for those who deliver the service and those who plan the delivery of care. In common with all datasets the use of the data inevitably improves its quality. No data are ever provided or presented which allows an individual to be identified. In this, we act in accordance with the guidelines provided by ONS.

Information on PICANet is available to clinical care teams and parents through posters that are displayed in units and leaflets that are produced in 'parent packs'. The PICANet website address is given in this material and provides a further source of general information and copies of the national reports. Newsletters on progress are distributed regularly to lead nurses and consultants in each unit.

PICANet is pleased to report an increasing number of requests for data and information (Appendix D). Some requests have only requested aggregated, anonymised data from the entire dataset. For other requests, for example those that identify individual PICUs, PICANet always ensures that lead clinicians are informed and seeks permission for their data to be used.

Requests have been received from individual clinicians, groups of researchers and NHS commissioners. Some of the reports produced have required complex data processing and analyses and this has incurred additional costs which have been charged accordingly.

Dissemination of information from PICANet has been of prime importance to the team and Appendix K details specific talks given at various venues, a list of abstracts that have been presented at conferences and papers published by members of the PICANet team on PICANet and related topics. We welcome the opportunity to present data in these forums: please contact one of the team if you would like us to speak at local or national meetings.

## 27 TABLES AND FIGURES

|             |        |        |        | Sex    |       |       |      |       |        |        |
|-------------|--------|--------|--------|--------|-------|-------|------|-------|--------|--------|
| Age (Years) | Ma     | le     | Fem    | ale    | Ambig | uous  | Unkn | own   | Tot    | al     |
|             | n      | %      | n      | %      | n     | %     | n    | %     | n      | %      |
|             |        |        |        |        |       |       |      |       |        |        |
| 0           | 11,899 | (59)   | 8,292  | (41)   | 9     | (0)   | 29   | (0)   | 20,229 | (47.9) |
| 1           | 2,593  | (55)   | 2,138  | (45)   | 3     | (0)   | 7    | (0)   | 4,741  | (11.2) |
| 2           | 1,349  | (56)   | 1,037  | (43)   | 0     | (0)   | 4    | (0)   | 2,390  | (5.7)  |
| 3           | 1,083  | (57)   | 830    | (43)   | 1     | (0)   | 2    | (0)   | 1,916  | (4.5)  |
| 4           | 846    | (56)   | 655    | (44)   | 0     | (0)   | 1    | (0)   | 1,502  | (3.6)  |
| 5           | 703    | (54)   | 590    | (46)   | 0     | (0)   | 2    | (0)   | 1,295  | (3.1)  |
| 6           | 611    | (56)   | 481    | (44)   | 1     | (0)   | 1    | (0)   | 1,094  | (2.6)  |
| 7           | 542    | (57)   | 402    | (43)   | 0     | (0)   | 1    | (0)   | 945    | (2.2)  |
| 8           | 439    | (55)   | 362    | (45)   | 0     | (0)   | 0    | (0)   | 801    | (1.9)  |
| 9           | 475    | (55)   | 391    | (45)   | 0     | (0)   | 0    | (0)   | 866    | (2.1)  |
| 10          | 510    | (55)   | 412    | (45)   | 0     | (0)   | 0    | (0)   | 922    | (2.2)  |
| 11          | 523    | (53)   | 460    | (47)   | 0     | (0)   | 0    | (0)   | 983    | (2.3)  |
| 12          | 558    | (53)   | 500    | (47)   | 0     | (0)   | 0    | (0)   | 1,058  | (2.5)  |
| 13          | 628    | (56)   | 495    | (44)   | 0     | (0)   | 1    | (0)   | 1,124  | (2.7)  |
| 14          | 650    | (53)   | 574    | (47)   | 0     | (0)   | 2    | (0)   | 1,226  | (2.9)  |
| 15          | 581    | (51)   | 548    | (49)   | 0     | (0)   | 0    | (0)   | 1,129  | (2.7)  |
| Total       | 23,990 | (56.8) | 18,167 | (43.0) | 14    | (0.0) | 50   | (0.1) | 42,221 |        |

#### Table 1 Admissions by age and sex, 2004 - 2006

Figure 1 Admissions by age and sex, 2004 - 2006

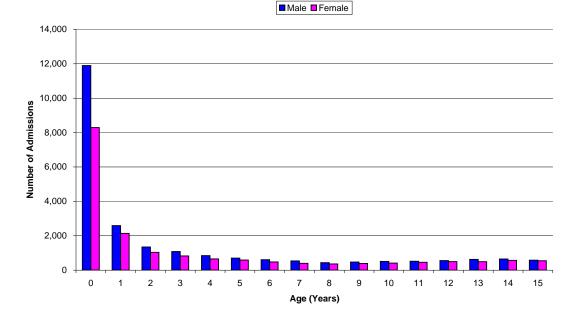
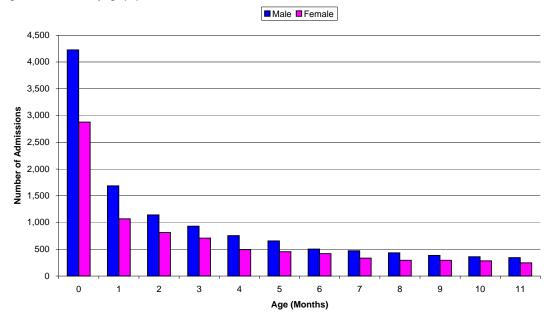




Table 2 Admissions by age (<1) and sex, 2004 - 2006

|              |        |        |       | Sex    |       |       |      |       |        |        |
|--------------|--------|--------|-------|--------|-------|-------|------|-------|--------|--------|
| Age (Months) | Ma     | le     | Fen   | nale   | Ambig | juous | Unkn | own   | Tot    | al     |
|              | n      | %      | n     | %      | n     | %     | n    | %     | n      | %      |
| -            |        | 1 1    |       |        |       |       |      |       |        |        |
| 0            | 4,226  | (59)   | 2,878 | (40)   | 6     | (0)   | 13   | (0)   | 7,123  | (35.2) |
| 1            | 1,686  | (61)   | 1,070 | (39)   | 0     | (0)   | 1    | (0)   | 2,757  | (13.6) |
| 2            | 1,142  | (58)   | 814   | (42)   | 1     | (0)   | 2    | (0)   | 1,959  | (9.7)  |
| 3            | 932    | (57)   | 709   | (43)   | 1     | (0)   | 2    | (0)   | 1,644  | (8.1)  |
| 4            | 755    | (60)   | 494   | (39)   | 0     | (0)   | 2    | (0)   | 1,251  | (6.2)  |
| 5            | 657    | (59)   | 455   | (41)   | 0     | (0)   | 0    | (0)   | 1,112  | (5.5)  |
| 6            | 504    | (55)   | 418   | (45)   | 0     | (0)   | 0    | (0)   | 922    | (4.6)  |
| 7            | 473    | (58)   | 335   | (41)   | 0     | (0)   | 1    | (0)   | 809    | (4.0)  |
| 8            | 433    | (59)   | 294   | (40)   | 0     | (0)   | 1    | (0)   | 728    | (3.6)  |
| 9            | 386    | (57)   | 294   | (43)   | 0     | (0)   | 1    | (0)   | 681    | (3.4)  |
| 10           | 361    | (56)   | 284   | (44)   | 1     | (0)   | 3    | (0)   | 649    | (3.2)  |
| 11           | 344    | (58)   | 247   | (42)   | 0     | (0)   | 3    | (1)   | 594    | (2.9)  |
| Total        | 11,899 | (58.8) | 8,292 | (41.0) | 9     | (0.0) | 29   | (0.1) | 20,229 |        |

Figure 2 Admissions by age (<1) and sex, 2004 - 2006



|         | 3 Admissions | by age by  |                |            |              |            |                |                    |                |              |                |
|---------|--------------|------------|----------------|------------|--------------|------------|----------------|--------------------|----------------|--------------|----------------|
| Year    | NHS Trust    | <1<br>n    | l<br>%         | 1-4<br>n   | 4 %          | 5-<br>n    | 10<br>%        | 11-<br>n           | -15<br>%       | Tot<br>n     | al<br>%        |
|         |              |            |                |            |              |            |                |                    |                |              |                |
| 2004    | A            | 151        | (34)           | 111        | (25)         | 91         | (21)           | 90                 | (20)           | 443          | (3.2)          |
|         | B<br>C       | 134<br>110 | (47)           | 75<br>55   | (26)         | 45<br>42   | (16)           | 31<br>57           | (11)<br>(22)   | 285<br>264   | (2.1)<br>(1.9) |
|         | D            | 249        | (42)           | 162        | (28)         | 84         | (10)           | 89                 | (15)           | 584          | (4.2)          |
|         | E            | 967        | (54)           | 381        | (21)         | 215        | (12)           | 215                | (12)           | 1,778        | (12.8)         |
|         | F            | 707        | (61)           | 269        | (23)         | 101        | (9)            | 88                 | (8)            | 1,165        | (8.4)          |
|         | G            | 13         | (30)           | 12         | (27)         | 9          | (20)           | 10                 | (23)           | 44           | (0.3)          |
|         | н            | 93         | (30)           | 110        | (36)         | 56         | (18)           | 49                 | (16)           | 308          | (2.2)          |
|         | l<br>J       | 393<br>36  | (46)           | 233<br>22  | (27)         | 130<br>13  | (15)           | 103<br>11          | (12)<br>(13)   | 859<br>82    | (6.2)          |
|         | K            | 519        | (44)<br>(59)   | 145        | (27)         | 111        | (16) (13)      | 108                | (13)           | 883          | (0.6)<br>(6.4) |
|         | L            | 79         | (35)           | 49         | (22)         | 44         | (19)           | 54                 | (24)           | 226          | (1.6)          |
|         | Μ            | 110        | (29)           | 107        | (29)         | 75         | (20)           | 81                 | (22)           | 373          | (2.7)          |
|         | Ν            | 155        | (46)           | 96         | (28)         | 43         | (13)           | 43                 | (13)           | 337          | (2.4)          |
|         | 0            | 274        | (50)           | 175        | (32)         | 65         | (12)           | 39                 | (7)            | 553          | (4.0)          |
|         | P            | 536        | (55)           | 239        | (24)         | 101        | (10)           | 106                | (11)           | 982          | (7.1)          |
|         | Q<br>R       | 247<br>286 | (45)<br>(49)   | 133<br>145 | (24)<br>(25) | 82<br>82   | (15)<br>(14)   | 85<br>72           | (16)<br>(12)   | 547<br>585   | (4.0)<br>(4.2) |
|         | S            | 62         | (37)           | 47         | (23)         | 31         | (14)           | 27                 | (12)           | 167          | (1.2)          |
|         | T            | 124        | (34)           | 125        | (34)         | 52         | (14)           | 65                 | (18)           | 366          | (2.6)          |
|         | U            | 139        | (35)           | 141        | (36)         | 66         | (17)           | 46                 | (12)           | 392          | (2.8)          |
|         | V            | 494        | (50)           | 242        | (25)         | 129        | (13)           | 118                | (12)           | 983          | (7.1)          |
|         | W            | 329        | (51)           | 146        | (23)         | 100        | (15)           | 73                 | (11)           | 648          | (4.7)          |
|         | X<br>Y       | 500        | (52)           | 211        | (22)         | 121        | (13)           | 132                | (14)           | 964          | (7.0)          |
| 2004 T  |              | 9<br>6,716 | (45)<br>(48.5) | 6<br>3,437 | (30)         | 3<br>1,891 | (15)<br>(13.7) | 2<br>1, <b>794</b> | (10)<br>(13.0) | 20<br>13,838 | (0.1)          |
|         |              |            |                |            |              |            |                |                    |                |              |                |
| 2005    | A            | 138        | (33)           | 99         | (24)         | 111        | (26)           | 72                 | (17)           | 420          | (3.0)          |
|         | B<br>C       | 108<br>103 | (46)<br>(38)   | 64<br>68   | (27)<br>(25) | 27<br>42   | (12)<br>(15)   | 34<br>58           | (15)<br>(21)   | 233<br>271   | (1.7)<br>(1.9) |
|         | D            | 219        | (38)           | 155        | (23)         | 98         | (17)           | 108                | (19)           | 580          | (4.1)          |
|         | E            | 833        | (55)           | 333        | (22)         | 194        | (13)           | 155                | (10)           | 1,515        | (10.8)         |
|         | F            | 655        | (58)           | 273        | (24)         | 107        | (10)           | 88                 | (8)            | 1,123        | <b>(8.0</b> )  |
|         | G            | 14         | (28)           | 13         | (26)         | 10         | (20)           | 13                 | (26)           | 50           | (0.4)          |
|         | н            | 111        | (33)           | 109        | (32)         | 55         | (16)           | 62                 | (18)           | 337          | (2.4)          |
|         | l<br>J       | 412        | (48)           | 204        | (24)         | 120        | (14)           | 117                | (14)           | 853          | (6.1)          |
|         | J<br>K       | 48<br>480  | (50)<br>(54)   | 24<br>196  | (25)<br>(22) | 13<br>104  | (14) (12)      | 11<br>104          | (11)<br>(12)   | 96<br>884    | (0.7)<br>(6.3) |
|         | L            | 93         | (34)           | 63         | (22)         | 56         | (12)           | 62                 | (12)           | 274          | (0.3)          |
|         | M            | 108        | (30)           | 107        | (30)         | 61         | (17)           | 79                 | (22)           | 355          | (2.5)          |
|         | Ν            | 134        | (45)           | 75         | (25)         | 39         | (13)           | 47                 | (16)           | 295          | (2.1)          |
|         | 0            | 362        | (59)           | 142        | (23)         | 71         | (12)           | 40                 | (7)            | 615          | (4.4)          |
|         | P            | 545        | (54)           | 261        | (26)         | 110        | (11)           | 101                | (10)           | 1,017        | (7.2)          |
|         | Q<br>R       | 241<br>327 | (41) (49)      | 151<br>134 | (26)         | 97<br>90   | (17)           | 92<br>114          | (16)<br>(17)   | 581<br>665   | (4.1)<br>(4.7) |
|         | S            | 61         | (34)           | 42         | (20)         | 32         | (14)           | 45                 | (17)           | 180          | (4.7)          |
|         | Т            | 105        | (25)           | 157        | (38)         | 89         | (22)           | 62                 | (15)           | 413          | (2.9)          |
|         | U            | 160        | (39)           | 146        | (36)         | 71         | (17)           | 31                 | (8)            | 408          | (2.9)          |
|         | v            | 488        | (54)           | 196        | (22)         | 129        | (14)           | 95                 | (10)           | 908          | (6.5)          |
|         | w            | 323        | (46)           | 190        | (27)         | 111        | (16)           | 77                 | (11)           | 701          | (5.0)          |
|         | X<br>Y       | 487<br>130 | (55)<br>(33)   | 189<br>92  | (21)<br>(24) | 110<br>84  | (12)<br>(21)   | 105<br>85          | (12)<br>(22)   | 891<br>391   | (6.3)<br>(2.8) |
| 2005 To |              | 6,685      | (47.6)         | 3,483      | (24.8)       | 2,031      | (14.4)         | 1,857              | (13.2)         | 14,056       | (2.0)          |
|         |              | 100        | (07)           | 100        | (00)         | 0.4        | (04)           | 00                 | (4.0)          | 440          | (0.4)          |
| 2006    | A<br>B       | 166<br>81  | (37)<br>(36)   | 103<br>57  | (23)<br>(25) | 94<br>31   | (21) (14)      | 86<br>57           | (19)<br>(25)   | 449<br>226   | (3.1)<br>(1.6) |
|         | C            | 113        | (38)           | 71         | (23)         | 57         | (14)           | 60                 | (25)           | 301          | (1.0)          |
|         | D            | 220        | (39)           | 163        | (29)         | 87         | (15)           | 101                | (18)           | 571          | (4.0)          |
|         | E            | 912        | (57)           | 360        | (23)         | 174        | (11)           | 154                | (10)           | 1,600        | (11.2)         |
|         | F            | 585        | (54)           | 285        | (26)         | 96         | (9)            | 120                | (11)           | 1,086        | (7.6)          |
|         | G            | 9          | (25)           | 11         | (31)         | 9          | (25)           | 7                  | (19)           | 36           | (0.3)          |
|         | H<br>I       | 100<br>401 | (32)           | 269        | (37)         | 52<br>131  | (17)           | 46                 | (15)           | 315          | (2.2)          |
|         | J            | 401        | (44)<br>(56)   | 269<br>20  | (30)<br>(27) | 131<br>6   | (14)<br>(8)    | 108<br>6           | (12)<br>(8)    | 909<br>73    | (6.3)<br>(0.5) |
|         | ĸ            | 542        | (60)           | 168        | (19)         | 83         | (9)            | 114                | (13)           | 907          | (6.3)          |
|         | L            | 88         | (29)           | 81         | (27)         | 56         | (19)           | 74                 | (25)           | 299          | (2.1)          |
|         | Μ            | 118        | (29)           | 121        | (30)         | 79         | (20)           | 87                 | (21)           | 405          | (2.8)          |
|         | N            | 127        | (46)           | 80         | (29)         | 41         | (15)           | 27                 | (10)           | 275          | (1.9)          |
|         | O<br>P       | 387        | (59)           | 150        | (23)         | 73         | (11)           | 45                 | (7)            | 655          | (4.6)          |
|         | Q            | 610<br>206 | (55)<br>(41)   | 271<br>133 | (25)<br>(26) | 116<br>89  | (11)<br>(18)   | 105<br>75          | (10)<br>(15)   | 1,102<br>503 | (7.7)<br>(3.5) |
|         | R            | 351        | (54)           | 118        | (18)         | 80         | (10)           | 107                | (15)           | 656          | (4.6)          |
|         | S            | 54         | (29)           | 49         | (26)         | 52         | (28)           | 33                 | (10)           | 188          | (1.3)          |
|         | T            | 140        | (32)           | 149        | (34)         | 96         | (22)           | 57                 | (13)           | 442          | (3.1)          |
|         | U            | 137        | (37)           | 141        | (38)         | 57         | (16)           | 32                 | (9)            | 367          | (2.6)          |
|         | V            | 557        | (53)           | 239        | (23)         | 137        | (13)           | 113                | (11)           | 1,046        | (7.3)          |
|         | W<br>X       | 317        | (49)           | 149        | (23)         | 112        | (17)           | 64                 | (10)           | 642          | (4.5)          |
|         | X<br>Y       | 438<br>128 | (50)           | 222<br>102 | (25)<br>(26) | 116<br>77  | (13)<br>(19)   | 101<br>90          | (12)           | 877<br>397   | (6.1)<br>(2.8) |
| 2006 T  |              | 6,828      | (47.7)         | 3,629      | (25.3)       | 2,001      | (14.0)         | 1,869              | (13.0)         | 14,327       | (2.0)          |
|         |              |            |                |            |              |            |                |                    |                |              |                |
| Grand   | Iotal        | 20,229     | (47.9)         | 10,549     | (25.0)       | 5,923      | (14.0)         | 5,520              | (13.1)         | 42,221       |                |

Table 3 Admissions by age by NHS trust, 2004 - 2006

| Table 4 | 4 Admissions | by age (   |              |            |                    |            |                   |            |              |            |                  |
|---------|--------------|------------|--------------|------------|--------------------|------------|-------------------|------------|--------------|------------|------------------|
| Year    | NHS Trust    | <<br>n     | 1<br>%       | 1-<br>n    | e Group<br>•2<br>% | •          | -5 <sup>´</sup> % | 6-<br>n    | 11<br>%      | Tot<br>n   | al<br>%          |
| 0004    |              |            |              |            |                    |            |                   |            |              |            |                  |
| 2004    | A<br>B       | 42         | (28)<br>(28) | 37<br>39   | (25)<br>(29)       | 33<br>28   | (22) (21)         | 39<br>29   | (26)<br>(22) | 151<br>134 | (2.2)<br>(2.0)   |
|         | С            | 26         | (24)         | 25         | (23)               | 31         | (28)              | 28         | (25)         | 110        | (1.6)            |
|         | D            | 51         | (20)         | 76         | (31)               | 60         | (24)              | 62         | (25)         | 249        | (3.7)            |
|         | E<br>F       | 420<br>312 | (43)<br>(44) | 192<br>151 | (20)<br>(21)       | 176<br>118 | (18)<br>(17)      | 179<br>126 | (19)<br>(18) | 967<br>707 | (14.4)<br>(10.5) |
|         | G            | 4          | (31)         | 4          | (31)               | 1          | (8)               | 4          | (31)         | 13         | (0.2)            |
|         | н            | 21         | (23)         | 25         | (27)               | 15         | (16)              | 32         | (34)         | 93         | (1.4)            |
|         | l<br>J       | 103<br>4   | (26)<br>(11) | 100<br>8   | (25)<br>(22)       | 98<br>14   | (25)<br>(39)      | 92<br>10   | (23)<br>(28) | 393<br>36  | (5.9)<br>(0.5)   |
|         | K            | 227        | (44)         | 136        | (26)               | 90         | (17)              | 66         | (13)         | 519        | (7.7)            |
|         | L            | 19         | (24)         | 28         | (35)               | 18         | (23)              | 14         | (18)         | 79         | (1.2)            |
|         | M<br>N       | 26<br>51   | (24)<br>(33) | 33<br>37   | (30)<br>(24)       | 18<br>41   | (16)<br>(26)      | 33<br>26   | (30)<br>(17) | 110<br>155 | (1.6)<br>(2.3)   |
|         | 0            | 105        | (38)         | 56         | (20)               | 59         | (22)              | 54         | (20)         | 274        | (4.1)            |
|         | P            | 211        | (39)         | 133        | (25)               | 96         | (18)              | 96         | (18)         | 536        | (8.0)            |
|         | Q<br>R       | 80<br>121  | (32)<br>(42) | 75<br>52   | (30)<br>(18)       | 45<br>50   | (18)<br>(17)      | 47<br>63   | (19)<br>(22) | 247<br>286 | (3.7)<br>(4.3)   |
|         | S            | 17         | (27)         | 20         | (32)               | 18         | (29)              | 7          | (11)         | 62         | (0.9)            |
|         | T            | 23         | (19)         | 30         | (24)               | 28         | (23)              | 43         | (35)         | 124        | (1.8)            |
|         | U<br>V       | 26<br>208  | (19)<br>(42) | 41<br>100  | (29)<br>(20)       | 31<br>93   | (22)<br>(19)      | 41<br>93   | (29)<br>(19) | 139<br>494 | (2.1)<br>(7.4)   |
|         | Ŵ            | 88         | (42)         | 78         | (20)               | 75         | (13)              | 88         | (13)         | 329        | (4.9)            |
|         | X            | 179        | (36)         | 103        | (21)               | 101        | (20)              | 117        | (23)         | 500        | (7.4)            |
| 2004 T  | Y            | 1<br>2,403 | (11)         | 5<br>1,584 | (56)<br>(23.6)     | 2<br>1,339 | (22)              | 1<br>1,390 | (11)         | 9<br>6,716 | (0.1)            |
|         |              |            |              |            |                    |            |                   |            |              |            |                  |
| 2005    | A<br>B       | 30<br>22   | (22)         | 41<br>33   | (30)               | 33<br>30   | (24) (28)         | 34<br>23   | (25)<br>(21) | 138<br>108 | (2.1)<br>(1.6)   |
|         | C            | 11         | (11)         | 33         | (32)               | 29         | (28)              | 30         | (21)         | 108        | (1.5)            |
|         | D            | 54         | (25)         | 69         | (32)               | 47         | (21)              | 49         | (22)         | 219        | (3.3)            |
|         | E<br>F       | 334<br>269 | (40)         | 174<br>152 | (21)               | 159<br>107 | (19)              | 166        | (20)         | 833<br>655 | (12.5)           |
|         | г<br>G       | 209        | (41)<br>(29) | 152        | (23)<br>(50)       | 0          | (16)<br>(0)       | 127<br>3   | (19)<br>(21) | 14         | (9.8)<br>(0.2)   |
|         | н            | 22         | (20)         | 21         | (19)               | 28         | (25)              | 40         | (36)         | 111        | (1.7)            |
|         | l<br>J       | 117        | (28)         | 90         | (22)               | 113        | (27)              | 92         | (22)         | 412        | (6.2)            |
|         | J<br>K       | 9<br>188   | (19)<br>(39) | 13<br>124  | (27)<br>(26)       | 13<br>74   | (27)<br>(15)      | 13<br>94   | (27)<br>(20) | 48<br>480  | (0.7)<br>(7.2)   |
|         | L            | 19         | (20)         | 38         | (41)               | 19         | (20)              | 17         | (18)         | 93         | (1.4)            |
|         | M            | 19         | (18)         | 28         | (26)               | 28         | (26)              | 33         | (31)         | 108        | (1.6)            |
|         | N<br>O       | 36<br>147  | (27)         | 33<br>71   | (25)<br>(20)       | 36<br>71   | (27)<br>(20)      | 29<br>73   | (22)<br>(20) | 134<br>362 | (2.0)<br>(5.4)   |
|         | P            | 204        | (37)         | 120        | (22)               | 114        | (21)              | 107        | (20)         | 545        | (8.2)            |
|         | Q            | 83         | (34)         | 67         | (28)               | 38         | (16)              | 53         | (22)         | 241        | (3.6)            |
|         | R<br>S       | 138<br>16  | (42)<br>(26) | 72<br>20   | (22)<br>(33)       | 60<br>17   | (18)<br>(28)      | 57<br>8    | (17)<br>(13) | 327<br>61  | (4.9)<br>(0.9)   |
|         | т            | 23         | (22)         | 25         | (24)               | 20         | (19)              | 37         | (35)         | 105        | (1.6)            |
|         | U            | 35         | (22)         | 36         | (23)               | 37         | (23)              | 52         | (33)         | 160        | (2.4)            |
|         | V<br>W       | 180<br>110 | (37)<br>(34) | 118<br>72  | (24)<br>(22)       | 114<br>66  | (23)<br>(20)      | 76<br>75   | (16)<br>(23) | 488<br>323 | (7.3)<br>(4.8)   |
|         | X            | 199        | (41)         | 96         | (20)               | 77         | (16)              | 115        | (24)         | 487        | (7.3)            |
| 000F T  | Y            | 45         | (35)         | 34         | (26)               | 18         | (14)              | 33         | (25)         | 130        | (1.9)            |
| 2005 T  | otal         | 2,314      | (34.6)       | 1,587      | (23.7)             | 1,348      | (20.2)            | 1,436      | (21.5)       | 6,685      |                  |
| 2006    | Α            | 43         | (26)         | 43         | (26)               | 26         | (16)              | 54         | (33)         | 166        | (2.4)            |
|         | B<br>C       | 17<br>23   | (21)         | 28<br>31   | (35)               | 19<br>24   | (23)              | 17<br>35   | (21)         | 81<br>113  | (1.2)            |
|         | D            | 40         | (20)         | 73         | (27)<br>(33)       | 42         | (21)              | 35<br>65   | (31)<br>(30) | 220        | (1.7)<br>(3.2)   |
|         | E            | 389        | (43)         | 193        | (21)               | 155        | (17)              | 175        | (19)         | 912        | (13.4)           |
|         | F<br>G       | 247        | (42)         | 121        | (21)               | 91         | (16)              | 126        | (22)         | 585        | (8.6)            |
|         | G<br>H       | 2<br>20    | (22)<br>(20) | 1<br>20    | (11)<br>(20)       | 1<br>22    | (11) (22)         | 5<br>38    | (56)<br>(38) | 9<br>100   | (0.1)<br>(1.5)   |
|         | 1            | 107        | (27)         | 83         | (21)               | 79         | (20)              | 132        | (33)         | 401        | (5.9)            |
|         | К<br>Ј       | 8          | (20)         | 13         | (32)               | 10         | (24)              | 10         | (24)         | 41<br>542  | (0.6)            |
|         | к<br>L       | 234<br>18  | (43)<br>(20) | 125<br>28  | (23)<br>(32)       | 110<br>23  | (20)<br>(26)      | 73<br>19   | (13)<br>(22) | 542<br>88  | (7.9)<br>(1.3)   |
|         | Μ            | 30         | (25)         | 36         | (31)               | 23         | (19)              | 29         | (25)         | 118        | (1.7)            |
|         | N<br>O       | 30         | (24)         | 26         | (20)               | 36         | (28)              | 35         | (28)         | 127        | (1.9)            |
|         | P            | 156<br>223 | (40)<br>(37) | 76<br>149  | (20)<br>(24)       | 74<br>114  | (19)<br>(19)      | 81<br>124  | (21)<br>(20) | 387<br>610 | (5.7)<br>(8.9)   |
|         | Q            | 86         | (42)         | 48         | (23)               | 29         | (14)              | 43         | (20)         | 206        | (3.0)            |
|         | R            | 144        | (41)         | 66         | (19)               | 87         | (25)              | 54         | (15)         | 351        | (5.1)            |
|         | S<br>T       | 12<br>16   | (22)         | 20<br>40   | (37)<br>(29)       | 11<br>38   | (20)<br>(27)      | 11<br>46   | (20)<br>(33) | 54<br>140  | (0.8)<br>(2.1)   |
|         | U            | 28         | (20)         | 35         | (29)               | 25         | (18)              | 40         | (36)         | 137        | (2.1)            |
|         | V            | 217        | (39)         | 106        | (19)               | 113        | (20)              | 121        | (22)         | 557        | (8.2)            |
|         | W<br>X       | 98<br>184  | (31) (42)    | 65<br>87   | (21)<br>(20)       | 69<br>75   | (22)<br>(17)      | 85<br>92   | (27)<br>(21) | 317<br>438 | (4.6)<br>(6.4)   |
|         | Y            | 34         | (42)         | 32         | (20)               | 24         | (17)              | 38         | (30)         | 438<br>128 | (0.4)            |
| 2006 T  | otal         | 2,406      | (35.2)       | 1,545      | (22.6)             | 1,320      | (19.3)            | 1,557      | (22.8)       | 6,828      |                  |
| Grand   | Total        | 7,123      | (35.2)       | 4,716      | (23.3)             | 4,007      | (19.8)            | 4,383      | (21.7)       | 20,229     |                  |

| Table 4 Admissions by age | (<1) by NHS trust, 2004 - 2006 |
|---------------------------|--------------------------------|
|---------------------------|--------------------------------|

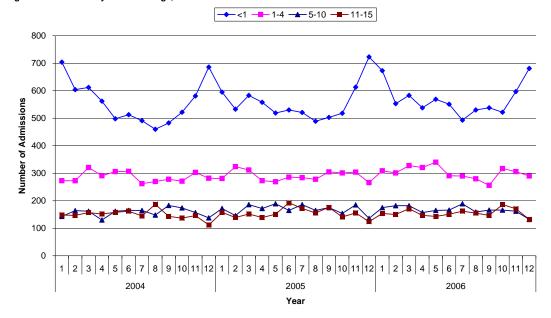
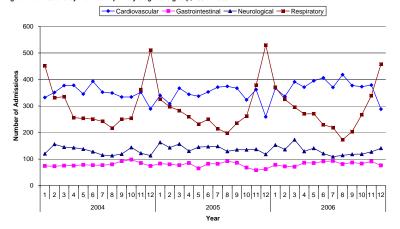

| Year    | NHS Trust | .        | 16           |          | Group (`<br>'-20 |        | -25        |        | 26+         | Т        | otal            |
|---------|-----------|----------|--------------|----------|------------------|--------|------------|--------|-------------|----------|-----------------|
| 41      |           | n        | %            | n        | %                | n      | %          | n      | %           | n        | %               |
| 2004    | Α         | 6        | (100)        | 0        | (0)              | 0      | (0)        | 0      | (0)         | 2        | (2.2)           |
| ∠004    | A<br>B    | 6        | (100)        | 2        | (0)<br>(25)      | 0      | (0)<br>(0) | 0      | (0)<br>(0)  | 6<br>8   | (2.2)<br>(2.9)  |
|         | С         | 4        | (100)        | 0        | (0)              | 0      | (0)        | 0      | (0)         | 4        | (1.4)           |
|         | D         | 10       | (71)         | 4        | (29)             | 0      | (0)        | 0      | (0)         | 14       | (5.0)           |
|         | E<br>F    | 29<br>8  | (74)<br>(57) | 10<br>6  | (26)<br>(43)     | 0<br>0 | (0)<br>(0) | 0<br>0 | (0)<br>(0)  | 39<br>14 | (14.0)<br>(5.0) |
|         | G         | 1        | (100)        | 0        | (0)              | 0      | (0)        | 0      | (0)         | 1        | (0.4)           |
|         | Н         | 9        | (100)        | 0        | (0)              | 0      | (0)        | 0      | (0)         | 9        | (3.2)           |
|         | 1         | 10       | (53)         | 8        | (42)             | 1      | (5)        | 0      | (0)         | 19       | (6.8)           |
|         | K<br>L    | 11       | (61)<br>(25) | 6<br>5   | (33) (63)        | 1<br>0 | (6)<br>(0) | 0      | (0)<br>(13) | 18<br>8  | (6.5)<br>(2.9)  |
|         | M         | 6        | (86)         | 1        | (14)             | 0      | (0)        | 0      | (10)        | 7        | (2.5)           |
|         | Ν         | 2        | (67)         | 1        | (33)             | 0      | (0)        | 0      | (0)         | 3        | (1.1)           |
|         | P<br>Q    | 6        | (55)         | 4        | (36)             | 1      | (9)        | 0      | (0)         | 11       | (4.0)           |
|         | R         | 14<br>15 | (78)<br>(52) | 4<br>13  | (22)<br>(45)     | 0<br>1 | (0)<br>(3) | 0<br>0 | (0)<br>(0)  | 18<br>29 | (6.5)<br>(10.4) |
|         | S         | 3        | (43)         | 3        | (43)             | 1      | (14)       | 0      | (0)         | 7        | (2.5)           |
|         | т         | 3        | (50)         | 3        | (50)             | 0      | (0)        | 0      | (0)         | 6        | (2.2)           |
|         | U<br>V    | 0        | (0)          | 2        | (100)            | 0      | (0)        | 0      | (0)         | 2        | (0.7)           |
|         | W         | 5<br>11  | (38)<br>(85) | 8<br>2   | (62)<br>(15)     | 0      | (0)<br>(0) | 0      | (0)<br>(0)  | 13<br>13 | (4.7)<br>(4.7)  |
|         | х         | 13       | (50)         | 12       | (46)             | 1      | (4)        | 0      | (0)         | 26       | (9.4)           |
|         | Y         | 3        | (100)        | 0        | (0)              | 0      | (0)        | 0      | (0)         | 3        | (1.1)           |
| 2004 To | otal      | 177      | (63.7)       | 94       | (33.8)           | 6      | (2.2)      | 1      | (0.4)       | 278      |                 |
| 2005    | Α         | 4        | (80)         | 1        | (20)             | 0      | (0)        | 0      | (0)         | 5        | (1.7)           |
|         | В         | 1        | (33)         | 2        | (67)             | 0      | (0)        | 0      | (0)         | 3        | (1.0)           |
|         | C<br>D    | 2        | (67)         | 1        | (33)             | 0      | (0)        | 0      | (0)         | 3        | (1.0)           |
|         | E         | 23       | (65)<br>(74) | 6<br>7   | (35)<br>(23)     | 0<br>0 | (0)<br>(0) | 1      | (0)<br>(3)  | 17<br>31 | (5.9)<br>(10.7) |
|         | F         | 5        | (56)         | 3        | (33)             | 0      | (0)        | 1      | (11)        | 9        | (3.1)           |
|         | н         | 2        | (67)         | 1        | (33)             | 0      | (0)        | 0      | (0)         | 3        | (1.0)           |
|         | l<br>J    | 12       | (67)         | 6<br>0   | (33)             | 0      | (0)        | 0<br>0 | (0)         | 18<br>1  | (6.2)<br>(0.3)  |
|         | J<br>K    | 8        | (100) (36)   | 11       | (0)<br>(50)      | 3      | (0)        | 0      | (0)<br>(0)  | 22       | (0.3)           |
|         | L         | 14       | (78)         | 3        | (17)             | 1      | (6)        | 0      | (0)         | 18       | (6.2)           |
|         | м         | 0        | (0)          | 2        | (100)            | 0      | (0)        | 0      | (0)         | 2        | (0.7)           |
|         | N<br>O    | 1        | (50)<br>(67) | 1        | (50)<br>(33)     | 0      | (0)<br>(0) | 0      | (0)         | 2<br>3   | (0.7)           |
|         | P         | 9        | (53)         | 8        | (33)             | 0      | (0)        | 0      | (0)<br>(0)  | 17       | (1.0)<br>(5.9)  |
|         | Q         | 8        | (35)         | 15       | (65)             | 0      | (0)        | 0      | (0)         | 23       | (8.0)           |
|         | R         | 11       | (48)         | 11       | (48)             | 1      | (4)        | 0      | (0)         | 23       | (8.0)           |
|         | S<br>T    | 3        | (60)<br>(67) | 2        | (40)<br>(33)     | 0<br>0 | (0)<br>(0) | 0<br>0 | (0)<br>(0)  | 5<br>6   | (1.7)<br>(2.1)  |
|         | Ū         | 2        | (50)         | 2        | (50)             | 0      | (0)        | 0      | (0)         | 4        | (1.4)           |
|         | v         | 9        | (69)         | 4        | (31)             | 0      | (0)        | 0      | (0)         | 13       | (4.5)           |
|         | W         | 12       | (86)         | 2        | (14)             | 0      | (0)        | 0      | (0)         | 14       | (4.8)           |
|         | X<br>Y    | 10       | (91)<br>(47) | 1<br>19  | (9)<br>(53)      | 0<br>0 | (0)<br>(0) | 0      | (0)<br>(0)  | 11<br>36 | (3.8)<br>(12.5) |
| 2005 To |           | 171      | (59.2)       | 111      | (38.4)           | 5      | (1.7)      | 2      | (0.7)       | 289      | (               |
| 2006    | •         | F        | (100)        | 0        | (0)              |        | (0)        | 0      | (0)         | E        | (4 4)           |
| 2006    | A<br>B    | 5        | (100) (50)   | 0        | (0)<br>(50)      | 0      | (0)<br>(0) | 0      | (0)<br>(0)  | 5<br>8   | (1.4)<br>(2.3)  |
|         | С         | 6        | (75)         | 2        | (25)             | 0      | (0)        | 0      | (0)         | 8        | (2.3)           |
|         | D         | 9        | (64)         | 5        | (36)             | 0      | (0)        | 0      | (0)         | 14       | (4.0)           |
|         | E<br>F    | 18<br>10 | (60)<br>(71) | 12<br>4  | (40)<br>(29)     | 0      | (0)<br>(0) | 0      | (0)         | 30<br>14 | (8.5)<br>(4.0)  |
|         | r<br>H    | 5        | (71)         | 4        | (29)             | 0      | (0)        | 0      | (0)<br>(0)  | 14       | (4.0)           |
|         | 1         | 13       | (65)         | 6        | (30)             | 1      | (5)        | 0      | (0)         | 20       | (5.7)           |
|         | J         | 0        | (0)          | 1        | (100)            | 0      | (0)        | 0      | (0)         | 1        | (0.3)           |
|         | K<br>L    | 12<br>16 | (39)<br>(84) | 17<br>2  | (55)<br>(11)     | 1<br>0 | (3)<br>(0) | 1<br>1 | (3)<br>(5)  | 31<br>19 | (8.8)<br>(5.4)  |
|         | M         | 6        | (35)         | 11       | (65)             | 0      | (0)        | 0      | (0)         | 17       | (4.8)           |
|         | N         | 1        | (100)        | 0        | (0)              | 0      | (0)        | 0      | (0)         | 1        | (0.3            |
|         | P         | 10       | (59)         | 7        | (41)             | 0      | (0)        | 0      | (0)         | 17       | (4.8            |
| Q<br>R  |           | 11<br>24 | (46)         | 12<br>11 | (50)<br>(31)     | 1<br>1 | (4)        | 0      | (0)<br>(0)  | 24<br>36 | (6.8)<br>(10.2) |
| S       |           | 1        | (50)         | 1        | (50)             | 0      | (0)        | 0      | (0)         | 2        | (0.6            |
|         | т         |          | (75)         | 2        | (25)             | 0      | (0)        | 0      | (0)         | 8        | (2.3)           |
|         | U<br>V    | 1        | (50)         | 1        | (50)             | 0      | (0)        | 0      | (0)         | 2        | (0.6            |
|         | W         | 12<br>11 | (67)<br>(65) | 6<br>6   | (33)<br>(35)     | 0<br>0 | (0)<br>(0) | 0<br>0 | (0)<br>(0)  | 18<br>17 | (5.1)<br>(4.8)  |
|         | X         | 14       | (74)         | 4        | (21)             | 0      | (0)        | 1      | (5)         | 19       | (5.4)           |
|         | Y         | 12       | (35)         | 22       | (65)             | 0      | (0)        | 0      | (0)         | 34       | (9.7            |
| 2006 To | otal      | 207      | (58.8)       | 138      | (39.2)           | 4      | (1.1)      | 3      | (0.9)       | 352      |                 |
|         |           |          |              |          |                  |        |            |        |             |          |                 |

Table 5 Admissions by age (16+) by NHS trust, 2004 - 2006

|                                    | 6 Admissi |              |                |              | e Group        |              | )              |              |                |                 |       |
|------------------------------------|-----------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|-----------------|-------|
| Year                               | Month     | <1           |                | 1-4          | 4              | 5-           | 10             | 11-          | -15            | Tota            | al    |
|                                    |           | n            | %              | n            | %              | n            | %              | n            | %              | n               | %     |
| 2004                               | 1         | 704          | (56)           | 273          | (22)           | 143          | (11)           | 148          | (12)           | 1,268           | (9.2) |
|                                    | 2         | 604          | (51)           | 273          | (23)           | 164          | (14)           | 147          | (12)           | 1,188           | (8.6) |
|                                    | 3         | 612          | (49)           | 321          | (26)           | 162          | (13)           | 157          | (13)           | 1,252           | (9.0) |
|                                    | 4         | 562          | (50)           | 291          | (26)           | 130          | (11)           | 152          | (13)           | 1,135           | (8.2) |
|                                    | 5         | 498          | (44)           | 306          | (27)           | 162          | (14)           | 158          | (14)           | 1,124           | (8.1) |
|                                    | 6         | 513          | (45)           | 307          | (27)           | 165          | (14)           | 162          | (14)           | 1,147           | (8.3) |
|                                    | 7         | 491          | (46)           | 262          | (25)           | 165          | (16)           | 145          | (14)           | 1,063           | (7.7  |
|                                    | 8         | 460          | (43)           | 270          | (25)           | 148          | (14)           | 187          | (18)           | 1,065           | (7.7) |
|                                    | 9         | 483          | (44)           | 278          | (26)           | 183          | (17)           | 143          | (13)           | 1,087           | (7.9) |
|                                    | 10        | 522          | (47)           | 271          | (25)           | 174          | (16)           | 137          | (12)           | 1,104           | (8.0) |
|                                    | 11        | 581          | (49)           | 303          | (26)           | 157          | (13)           | 146          | (12)           | 1,187           | (8.6) |
|                                    | 12        | 686          | (56)           | 282          | (23)           | 138          | (11)           | 112          | (9)            | 1,218           | (8.8) |
| 2004 T                             | otal      | 6,716        | (48.5)         | 3,437        | (24.8)         | 1,891        | (13.7)         | 1,794        | (13.0)         | 13,838          |       |
| 2005                               | 1         | 595          | (49)           | 281          | (23)           | 172          | (14)           | 158          | (13)           | 1,206           | (8.6) |
| 2005                               | 2         | 533          | (49)           | 324          | (23)           | 146          | (14)           | 139          | (13)           | 1,142           | (8.1) |
|                                    | 3         | 583          | (47)           | 312          | (25)           | 186          | (15)           | 152          | (12)           | 1,233           | (8.8) |
|                                    | 4         | 558          | (47)           | 273          | (23)           | 172          | (15)           | 132          | (12)           | 1,142           | (8.1) |
|                                    | 5         | 519          | (46)           | 269          | (24)           | 189          | (13)           | 151          | (12)           | 1,128           | (8.0) |
|                                    | 6         | 530          | (45)           | 286          | (24)           | 165          | (17)           | 193          | (16)           | 1,174           | (8.4) |
|                                    | 7         | 521          | (45)           | 284          | (24)           | 186          | (14)           | 172          | (10)           | 1,163           | (8.3  |
|                                    | 8         | 489          | (45)           | 278          | (26)           | 165          | (15)           | 156          | (14)           | 1,088           | (7.7  |
|                                    | 9         | 503          | (43)           | 305          | (26)           | 175          | (15)           | 176          | (15)           | 1,159           | (8.2  |
| 2004 T<br>2005<br>2005 T           | 10        | 518          | (46)           | 301          | (27)           | 154          | (14)           | 141          | (13)           | 1,114           | (7.9  |
| 2004 T<br>2005 T<br>2005 T<br>2006 | 11        | 613          | (49)           | 304          | (24)           | 185          | (15)           | 156          | (12)           | 1,258           | (8.9  |
|                                    | 12        | 723          | (58)           | 266          | (21)           | 136          | (11)           | 124          | (10)           | 1,249           | (8.9  |
| 2005 T                             |           | 6,685        | (47.6)         | 3,483        | (24.8)         | 2,031        | (14.4)         | 1,857        | (13.2)         | 14,056          | (010) |
|                                    |           |              | (= )           |              | (= .)          |              | ( ) = >        |              | (1.0)          |                 |       |
| 2006                               | 1         | 673          | (51)           | 309          | (24)           | 175          | (13)           | 154          | (12)           | 1,311           | (9.2) |
|                                    | 2         | 553          | (47)           | 301          | (25)           | 182          | (15)           | 150          | (13)           | 1,186           | (8.3) |
|                                    | 3         | 583          | (46)           | 328          | (26)           | 182          | (14)           | 171          | (14)           | 1,264           | (8.8) |
|                                    | 4<br>5    | 538          | (46)           | 321          | (28)           | 157          | (13)           | 147          | (13)           | 1,163           | (8.1) |
|                                    |           | 569          | (47)           | 340          | (28)           | 165          | (14)           | 143          | (12)           | 1,217           | (8.5) |
|                                    | 6<br>7    | 551<br>493   | (48)           | 291          | (25)           | 166          | (14)           | 151          | (13)           | 1,159           | (8.1) |
|                                    |           |              | (43)           | 290          | (26)           | 189          | (17)           | 162          | (14)           | 1,134           | (7.9) |
|                                    | 8<br>9    | 530          | (47)           | 280          | (25)           | 159          | (14)           | 155          | (14)           | 1,124           | (7.8) |
|                                    |           | 538          | (49)           | 256          | (23)           | 166          | (15)           | 147          | (13)           | 1,107           | (7.7) |
|                                    | 10<br>11  | 522<br>597   | (44)           | 317          | (27)           | 166<br>162   | (14)           | 186          | (16)           | 1,191           | (8.3) |
|                                    | 11<br>12  |              | (48)           | 306          | (25)           |              | (13)           | 171          | (14)           | 1,236           | (8.6) |
| 2006 T                             |           | 681<br>6,828 | (55)<br>(47.7) | 290<br>3,629 | (23)<br>(25.3) | 132<br>2,001 | (11)<br>(14.0) | 132<br>1,869 | (11)<br>(13.0) | 1,235<br>14,327 | (8.6) |
| 2006 I                             | otal      | 0,8∠8        | (47.7)         | 3,029        | (20.3)         | 2,001        | (14.0)         | 1,809        | (13.0)         | 14,327          |       |
| Grand                              | Total     | 20,229       | (47.9)         | 10,549       | (25.0)         | 5,923        | (14.0)         | 5,520        | (13.1)         | 42,221          |       |

Table 6 Admissions by month and age, 2004 - 2006


Figure 6 Admissions by month and age, 2004 - 2006



| Table 7 Admissions b   | w month and | nrimary dia | anostic (  | aroun 2  | 004 - | 2006 |
|------------------------|-------------|-------------|------------|----------|-------|------|
| Table / Autilissions b | y monun anu | primary una | agnostic g | proup, z | 004   | 2000 |

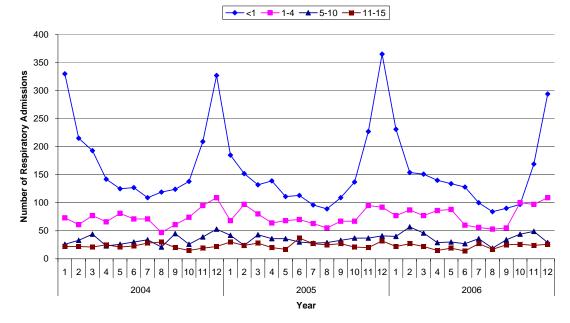

|        |       |             |         | ary diagnostic s |            |            |              |               |            |           |            | Diagno   | ostic G    | Group    |            |          |         |            |              |          |         |          |            |            |              |                  |       |       |                            |
|--------|-------|-------------|---------|------------------|------------|------------|--------------|---------------|------------|-----------|------------|----------|------------|----------|------------|----------|---------|------------|--------------|----------|---------|----------|------------|------------|--------------|------------------|-------|-------|----------------------------|
| Year   | Month | Blood / lyn | nphatic | Body wall and    | d cavities | Cardiova   | scular       | Endocrine / m | etabolic   | Gastroint | estinal    | Infecti  | on         | Multisys | stem       | Musculos | keletal | Neurolo    | ogical       | Oncol    | ogy     | Othe     | r          | Respira    | atory        | Trauma           | Unkno | wn    | Total                      |
|        |       | n           | %       | n                | %          | n          | %            | n             | %          | n         | %          | n        | %          | n        | %          | n        | %       | n          | %            | n        | %       | n        | %          | n          | %            | n %              | n     | %     | n %                        |
| 2004   | 1     | 8           | (1)     | 26               | (2)        | 332        | (26)         | 22            | (2)        | 74        | (6)        | 66       | (5)        | 0        | (0)        | 44       | (3)     | 120        | (9)          | 43       | (3)     | 52       | (4)        | 451        | (36)         | 28 (2)           | 2     | (0)   | 1,268 (9.2)                |
| 2004   | 2     | 4           | (0)     | 34               | (2)        | 351        | (30)         | 21            | (2)        | 74        | (6)        | 53       | (4)        | 1        | (0)        | 31       | (3)     | 156        | (13)         | 40       | (3)     | 52       | (4)        | 331        | (28)         | 34 (3)           | 7     | (1)   | 1,188 (8.6)                |
|        | 2     | 6           | (0)     | 35               | (3)        | 377        | (30)         | 26            | (2)        | 75        | (6)        | 72       | (4)        | 2        | (0)        | 47       | (3)     | 145        | (13)         | 37       | (3)     | 50       | (4)        | 335        | (20)         | 39 (3)           | 6     | (1)   | 1,252 (9.0)                |
|        | 4     | 6           | (1)     | 23               | (2)        | 378        | (33)         | 17            | (1)        | 75        | (7)        | 63       | (6)        | 2        | (0)        | 30       | (3)     | 143        | (12)         | 47       | (4)     | 43       | (4)        | 256        | (23)         | 47 (4)           | 5     | (0)   | 1,135 (8.2)                |
|        | 5     | 7           | (1)     | 19               | (2)        | 345        | (31)         | 21            | (2)        | 78        | (7)        | 35       | (3)        | 1        | (0)        | 40       | (4)     | 138        | (12)         | 43       | (4)     | 53       | (5)        | 253        | (23)         | 86 (8)           | 5     | (0)   | 1,124 (8.1)                |
|        | 6     | 11          | (1)     | 26               | (2)        | 393        | (34)         | 14            | (1)        | 77        | (7)        | 41       | (4)        | 6        | (1)        | 45       | (4)     | 128        | (11)         | 44       | (4)     | 52       | (5)        | 251        | (22)         | 59 (5)           | 0     | (0)   | 1,147 (8.3)                |
|        | 7     | 10          | (1)     | 21               | (2)        | 352        | (33)         | 22            | (2)        | 77        | (7)        | 45       | (4)        | 3        | (0)        | 36       | (3)     | 115        | (11)         | 33       | (3)     | 48       | (5)        | 242        | (23)         | 56 (5)           | 3     | (0)   | 1,063 (7.7)                |
|        | 8     | 7           | (1)     | 21               | (2)        | 349        | (33)         | 28            | (3)        | 80        | (8)        | 57       | (5)        | 1        | (0)        | 40       | (4)     | 113        | (11)         | 42       | (4)     | 51       | (5)        | 217        | (20)         | 54 (5)           | 5     | (0)   | 1,065 (7.7)                |
|        | 9     | 8           | (1)     | 28               | (3)        | 334        | (31)         | 19            | (2)        | 92        | (8)        | 41       | (4)        | 1        | (0)        | 36       | (3)     | 119        | (11)         | 52       | (5)     | 57       | (5)        | 250        | (23)         | 44 (4)           | 6     | (1)   | 1,087 (7.9)                |
|        | 10    | 7           | (1)     | 23               | (2)        | 334        | (30)         | 22            | (2)        | 98        | (9)        | 37       | (3)        | 0        | (0)        | 43       | (4)     | 144        | (13)         | 47       | (4)     | 47       | (4)        | 253        | (23)         | 44 (4)           | 5     | (0)   | 1,104 (8.0)                |
|        | 11    | 9           | (1)     | 22               | (2)        | 352        | (30)         | 20            | (2)        | 85        | (7)        | 35       | (3)        | 1        | (0)        | 40       | (3)     | 122        | (10)         | 41       | (3)     | 57       | (5)        | 362        | (30)         | 33 (3)           | 8     | (1)   | 1,187 (8.6)                |
|        | 12    | 5           | (0)     | 17               | (1)        | 289        | (24)         | 25            | (2)        | 74        | (6)        | 66       | (5)        | 0        | (0)        | 20       | (2)     | 113        | (9)          | 41       | (3)     | 34       | (3)        | 511        | (42)         | 21 (2)           | 2     | (0)   | 1,218 (8.8)                |
| 2004 T | otal  | 88          | (0.6)   | 295              | (2.1)      | 4,186      | (30.3)       | 257           | (1.9)      | 958       | (6.9)      | 611      | (4.4)      | 18       | (0.1)      | 452      | (3.3)   | 1,556      | (11.2)       | 510      | (3.7)   | 596      | (4.3)      | 3,712      | (26.8)       | 545 (3.9)        | 54    | (0.4) | 13,838                     |
| 2005   | 4     | 0           | (0)     | 40               | (4)        | 0.40       | (00)         | 07            | (0)        | 00        | (7)        | 00       | (7)        |          | (0)        | 45       | (4)     | 400        | (4.4)        | 04       | (0)     | 54       | (4)        | 205        | (07)         | 07 (0)           | 7     | (4)   | 4 000 (0.0)                |
| 2005   | 1     | 6<br>12     | (0)     | 16<br>20         | (1)        | 340<br>308 | (28)<br>(27) | 27<br>31      | (2)        | 83<br>80  | (7)        | 82<br>71 | (7)<br>(6) | 3        | (0)        | 45<br>36 | (4)     | 163<br>143 | (14)<br>(13) | 31<br>39 | (3)     | 51<br>52 | (4)<br>(5) | 325<br>297 | (27)<br>(26) | 27 (2)<br>36 (3) | 13    | (1)   | 1,206 (8.6)<br>1,142 (8.1) |
|        | 2     | 8           | (1)     | 20               | (2)        | 308        | (30)         | 35            | (3)        | 77        | (7)        | 76       | (-)        | 5        | (0)        | 46       |         | 143        | (13)         | 45       | (3)     | 63       | (5)        | 283        | (20)         | 36 (3)           | 8     | (1)   | 1,142 (0.1)                |
|        | 3     | 8           | (1)     | 35               | (2)<br>(3) | 344        | (30)         | 23            | (3) (2)    | 85        | (6)<br>(7) | 67       | (6)<br>(6) | 3        | (0)<br>(0) | 35       | (4)     | 137        | (13)         | 40       | (4)     | 66       | (6)        | 263        | (23)         | 39 (3)           | 8     | (1)   | 1,142 (8.1)                |
|        | 5     | 15          | (1)     | 29               | (3)        | 337        | (30)         | 19            | (2)        | 65        | (6)        | 58       | (5)        | 7        | (1)        | 47       | (3)     | 145        | (13)         | 40       | (4)     | 47       | (4)        | 233        | (23)         | 69 (6)           | 11    | (1)   | 1,128 (8.0)                |
|        | 6     | 16          | (1)     | 29               | (3)        | 353        | (30)         | 19            | (1)        | 82        | (7)        | 46       | (4)        | 4        | (0)        | 37       | (4)     | 143        | (13)         | 43       | (4)     | 76       | (6)        | 250        | (21)         | 69 (6)           | 8     | (1)   | 1,174 (8.4)                |
|        | 7     | 10          | (1)     | 37               | (2)        | 371        | (32)         | 24            | (1)        | 82        | (7)        | 64       | (6)        | 3        | (0)        | 39       | (3)     | 148        | (13)         | 47       | (4)     | 51       | (4)        | 214        | (18)         | 59 (5)           | 14    | (1)   | 1,163 (8.3)                |
|        | 8     | 9           | (1)     | 27               | (2)        | 374        | (34)         | 21            | (2)        | 92        | (8)        | 36       | (3)        | 3        | (0)        | 37       | (3)     | 129        | (12)         | 39       | (4)     | 54       | (5)        | 198        | (18)         | 64 (6)           | 5     | (0)   | 1,088 (7.7)                |
|        | 9     | 6           | (1)     | 29               | (3)        | 367        | (32)         | 29            | (3)        | 86        | (7)        | 32       | (3)        | 2        | (0)        | 48       | (4)     | 135        | (12)         | 61       | (5)     | 43       | (4)        | 236        | (20)         | 59 (5)           | 26    | (2)   | 1,159 (8.2)                |
|        | - 10  | 7           | (1)     | 26               | (2)        | 323        | (29)         | 24            | (2)        | 68        | (6)        | 69       | (6)        | 1        | (0)        | 44       | (4)     | 135        | (12)         | 45       | (4)     | 46       | (4)        | 262        | (24)         | 32 (3)           | 32    | (3)   | 1.114 (7.9)                |
|        | 11    | 11          | (1)     | 22               | (2)        | 362        | (29)         | 30            | (2)        | 58        | (5)        | 57       | (5)        | 4        | (0)        | 50       | (4)     | 137        | (11)         | 53       | (4)     | 28       | (2)        | 379        | (30)         | 42 (3)           |       | (2)   | 1,258 (8.9)                |
|        | 12    | 9           | (1)     | 18               | (1)        | 259        | (21)         | 24            | (2)        | 62        | (5)        | 65       | (5)        | 1        | (0)        | 28       | (2)     | 118        | (9)          | 42       | (3)     | 28       | (2)        | 530        | (42)         | 29 (2)           | 36    | (3)   | 1,249 (8.9)                |
| 2005 T | otal  | 117         | (0.8)   | 315              | (2.2)      | 4,105      | (29.2)       | 301           | (2.1)      | 920       | (6.5)      | 723      | (5.1)      | 40       | (0.3)      | 492      | (3.5)   | 1,687      | (12.0)       | 532      | (3.8)   | 605      | (4.3)      | 3,465      | (24.7)       | 561 (4.0)        | 193   | (1.4) | 14,056                     |
|        |       | 40          | (4)     |                  | (0)        | 0.07       | (0.0)        |               | (0)        | 70        | (0)        |          | (0)        |          | (0)        |          | (1)     | 450        | (10)         | 50       | (4)     | 54       | (4)        | 070        | (00)         | 0.1 (0)          |       | (0)   |                            |
| 2006   | 1     | 13<br>12    | (1)     | 26<br>24         | (2)        | 367<br>336 | (28)         | 34            | (3)        | 78<br>72  | (6)        | 80<br>68 | (6)        | 2        | (0)        | 50<br>41 | (4)     |            | (12)         | 52<br>52 | (4)     | 54<br>42 | (4)        | 370<br>325 | (28)         | 31 (2)<br>33 (3) | 1     | (0)   | 1,311 (9.2)                |
|        | 2     | 12          | (1)     | 24               | (2)        | 336        | (28)         | 36<br>36      | (3)        | 72        | (6)        | 73       | (6)        | 4        | (0)        | 41<br>54 | (3)     | 173        | (11)         | 52<br>40 | (4) (3) | 42       | (4)        | 325<br>296 | (27)<br>(23) | 33 (3)<br>33 (3) | 6     | (1)   | 1,186 (8.3)<br>1,264 (8.8) |
|        | 3     | 10          | (1)     | 20               | (2)        | 391        | (31)<br>(32) | 26            | (3)<br>(2) | 86        | (6)<br>(7) | 75       | (6)<br>(6) | 6        | (0)        | 33       | (4)     | 129        | (14)         | 40       | (3)     | 40       | (4)        | 296        | (23)         | 42 (4)           | 3     | (0)   | 1,163 (8.1)                |
|        | 5     | 8           | (1)     | 33               | (2)        | 395        | (32)         | 30            | (2)        | 85        | (7)        | 52       | (4)        | 3        | (0)        | 48       | (4)     | 141        | (11)         | 43       | (3)     | 56       | (5)        | 270        | (22)         | 52 (4)           | 1     | (0)   | 1,217 (8.5)                |
|        | 6     | 11          | (1)     | 27               | (2)        | 406        | (35)         | 20            | (2)        | 91        | (8)        | 45       | (4)        | 7        | (1)        | 58       | (5)     | 121        | (12)         | 33       | (3)     | 57       | (5)        | 229        | (20)         | 51 (4)           | 3     | (0)   | 1,159 (8.1)                |
|        | 7     | 8           | (1)     | 28               | (2)        | 370        | (33)         | 35            | (3)        | 93        | (8)        | 49       | (4)        | 2        | (0)        | 37       | (3)     | 109        | (10)         | 64       | (6)     | 59       | (5)        | 219        | (19)         | 55 (5)           | 6     | (0)   | 1,134 (7.9)                |
|        | 8     | 5           | (0)     | 23               | (2)        | 418        | (37)         | 29            | (3)        | 81        | (7)        | 57       | (5)        | 4        | (0)        | 43       | (4)     | 114        | (10)         | 45       | (4)     | 52       | (5)        | 173        | (15)         | 70 (6)           | 10    | (1)   | 1,124 (7.8)                |
|        | 9     | 9           | (1)     | 33               | (2)        | 377        | (34)         | 27            | (2)        | 87        | (8)        | 46       | (4)        | 2        | (0)        | 45       | (4)     | 118        | (11)         | 47       | (4)     | 56       | (5)        | 204        | (18)         | 47 (4)           | 9     | (1)   | 1,107 (7.7)                |
|        | 10    | 11          | (1)     | 24               | (2)        | 373        | (31)         | 27            | (2)        | 83        | (7)        | 55       | (5)        | 4        | (0)        | 66       | (6)     |            | (10)         | 48       | (4)     | 58       | (5)        | 267        | (22)         | 52 (4)           | 4     | (0)   | 1,191 (8.3)                |
|        | 11    | 15          | (1)     | 24               | (2)        | 379        | (31)         | 23            | (2)        | 91        | (7)        | 59       | (5)        | 6        | (0)        | 48       | (4)     | 127        | (10)         | 36       | (3)     | 41       | (3)        | 339        | (27)         | 40 (3)           | 8     | (1)   | 1,236 (8.6)                |
|        | 12    | 12          | (1)     | 25               | (2)        | 288        | (23)         | 36            | (3)        | 76        | (6)        | 53       | (4)        | 5        | (0)        | 25       | (2)     |            | (11)         | 33       | (3)     | 39       | (3)        | 458        | (37)         | 35 (3)           | 9     | (1)   | 1,235 (8.6)                |
| 2006 T | otal  | 125         | (0.9)   | 315              | (2.2)      | 4,471      | (31.2)       | 359           | (2.5)      | 994       | (6.9)      | 712      |            | 48       | (0.3)      | 548      | (3.8)   | 1,581      | (11.0)       | 537      | (3.7)   | 609      | (4.3)      | 3,421      | (23.9)       | 541 (3.8)        | 66    | (0.5) | 14,327                     |
|        |       |             | (0.5)   | 0.05             | (0.7)      | 10 300     | (0.0.0)      |               | (0.5)      | 0.070     | (0.5)      |          | (1.0)      |          | (0.0)      |          | (0.5)   |            |              | 4 534    | (0.7)   |          | (1.0)      |            | (05.4)       |                  |       | (0.7) |                            |
| Grand  | Total | 330         | (0.8)   | 925              | (2.2)      | 12,762     | (30.2)       | 917           | (2.2)      | 2,872     | (6.8)      | 2,046    | (4.8)      | 106      | (0.3)      | 1,492    | (3.5)   | 4,824      | (11.4)       | 1,579    | (3.7)   | 1,810    | (4.3)      | 10,598     | (25.1)       | 1,647 (3.9)      | 313   | (0.7) | 42,221                     |

Figure 7 Admissions by month and primary diagnostic group, 2004 - 2006

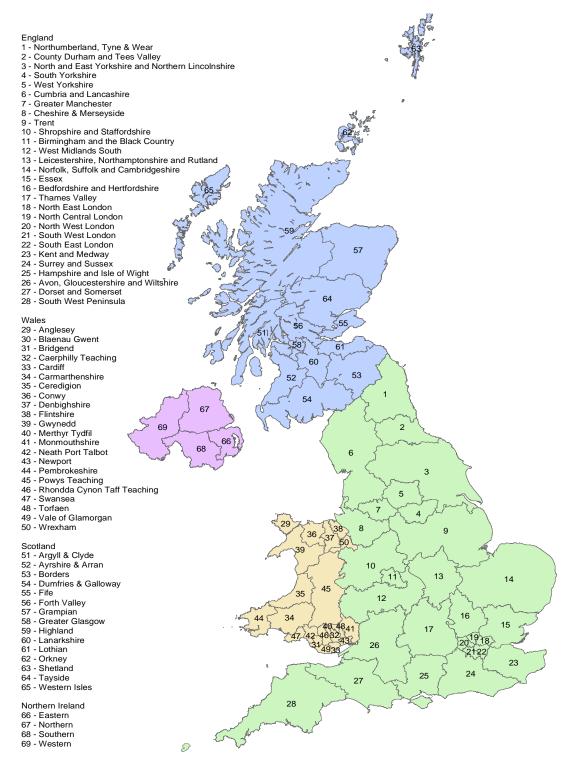


| Age Group (Years) |       |       |        |       |        |       |        |     |       |        |        |  |  |
|-------------------|-------|-------|--------|-------|--------|-------|--------|-----|-------|--------|--------|--|--|
| Year              | Month | <     | 1      | 1.    | -4     | 10    | 11     | -15 | Total |        |        |  |  |
|                   |       | n     | %      | n     | %      | n     | %      | n   | %     | n      | %      |  |  |
|                   |       |       |        |       |        |       |        |     |       |        |        |  |  |
| 2004              | 1     | 330   | (73)   | 73    | (16)   | 26    | (6)    | 22  | (5)   | 451    | (12.1  |  |  |
|                   | 2     | 215   | (65)   | 61    | (18)   | 33    | (10)   | 22  | (7)   | 331    | (8.9   |  |  |
|                   | 3     | 193   | (58)   | 77    | (23)   | 44    | (13)   | 21  | (6)   | 335    | (9.0   |  |  |
|                   | 4     | 142   | (55)   | 66    | (26)   | 23    | (9)    | 25  | (10)  | 256    | (6.9   |  |  |
|                   | 5     | 125   | (49)   | 81    | (32)   | 26    | (10)   | 21  | (8)   | 253    | (6.8   |  |  |
|                   | 6     | 127   | (51)   | 71    | (28)   | 30    | (12)   | 23  | (9)   | 251    | (6.8   |  |  |
|                   | 7     | 109   | (45)   | 71    | (29)   | 34    | (14)   | 28  | (12)  | 242    | (6.5   |  |  |
|                   | 8     | 119   | (55)   | 47    | (22)   | 21    | (10)   | 30  | (14)  | 217    | (5.8   |  |  |
|                   | 9     | 124   | (50)   | 61    | (24)   | 45    | (18)   | 20  | (8)   | 250    | (6.7   |  |  |
|                   | 10    | 138   | (55)   | 74    | (29)   | 26    | (10)   | 15  | (6)   | 253    | (6.8   |  |  |
|                   | 11    | 209   | (58)   | 95    | (26)   | 39    | (11)   | 19  | (5)   | 362    | (9.8   |  |  |
|                   | 12    | 327   | (64)   | 109   | (21)   | 53    | (10)   | 22  | (4)   | 511    | (13.8  |  |  |
| 2004 T            | otal  | 2,158 | (58.1) | 886   | (23.9) | 400   | (10.8) | 268 | (7.2) | 3,712  |        |  |  |
| 2005              | 1     | 185   | (57)   | 68    | (21)   | 42    | (13)   | 30  | (9)   | 325    | (9.4   |  |  |
| 2003              | 2     | 152   | (51)   | 97    | (33)   | 24    | (8)    | 24  | (8)   | 297    | (8.6)  |  |  |
|                   | 3     | 132   | (47)   | 80    | (28)   | 43    | (15)   | 28  | (10)  | 283    | (8.2   |  |  |
|                   | 4     | 132   | (54)   | 64    | (25)   | 36    | (13)   | 20  | (10)  | 259    | (7.5)  |  |  |
|                   | 5     | 111   | (48)   | 68    | (29)   | 36    | (14)   | 17  | (7)   | 232    | (6.7)  |  |  |
|                   | 6     | 113   | (45)   | 70    | (28)   | 30    | (12)   | 37  | (15)  | 250    | (7.2   |  |  |
|                   | 7     | 96    | (45)   | 63    | (29)   | 28    | (12)   | 27  | (13)  | 214    | (6.2   |  |  |
|                   | 8     | 89    | (45)   | 55    | (28)   | 29    | (15)   | 25  | (13)  | 198    | (5.7   |  |  |
|                   | 9     | 109   | (46)   | 67    | (28)   | 33    | (14)   | 27  | (11)  | 236    | (6.8   |  |  |
|                   | 10    | 137   | (52)   | 67    | (26)   | 37    | (14)   | 21  | (8)   | 262    | (7.6   |  |  |
|                   | 11    | 227   | (60)   | 95    | (25)   | 37    | (10)   | 20  | (5)   | 379    | (10.9  |  |  |
|                   | 12    | 365   | (69)   | 92    | (17)   | 41    | (8)    | 32  | (6)   | 530    | (15.3  |  |  |
| 2005 T            | otal  | 1,855 | (53.5) | 886   | (25.6) | 416   | (12.0) | 308 | (8.9) | 3,465  |        |  |  |
|                   |       |       |        |       |        |       |        |     |       |        |        |  |  |
| 2006              | 1     | 231   | (62)   | 77    | (21)   | 40    | (11)   | 22  | (6)   | 370    | (10.8) |  |  |
|                   | 2     | 154   | (47)   | 87    | (27)   | 57    | (18)   | 27  | (8)   | 325    | (9.5)  |  |  |
|                   | 3     | 151   | (51)   | 77    | (26)   | 46    | (16)   | 22  | (7)   | 296    | (8.7)  |  |  |
|                   | 4     | 140   | (52)   | 86    | (32)   | 29    | (11)   | 15  | (6)   | 270    | (7.9   |  |  |
|                   | 5     | 134   | (49)   | 88    | (32)   | 30    | (11)   | 19  | (7)   | 271    | (7.9   |  |  |
|                   | 6     | 128   | (56)   | 60    | (26)   | 27    | (12)   | 14  | (6)   | 229    | (6.7   |  |  |
|                   | 7     | 100   | (46)   | 56    | (26)   | 36    | (16)   | 27  | (12)  | 219    | (6.4   |  |  |
|                   | 8     | 84    | (49)   | 53    | (31)   | 19    | (11)   | 17  | (10)  | 173    | (5.1)  |  |  |
|                   | 9     | 90    | (44)   | 55    | (27)   | 34    | (17)   | 25  | (12)  | 204    | (6.0)  |  |  |
|                   | 10    | 97    | (36)   | 100   | (37)   | 44    | (16)   | 26  | (10)  | 267    | (7.8   |  |  |
|                   | 11    | 169   | (50)   | 97    | (29)   | 49    | (14)   | 24  | (7)   | 339    | (9.9   |  |  |
| 2006 -            | 12    | 294   | (64)   | 109   | (24)   | 29    | (6)    | 26  | (6)   | 458    | (13.4  |  |  |
| 2006 T            | otal  | 1,772 | (51.8) | 945   | (27.6) | 440   | (12.9) | 264 | (7.7) | 3,421  |        |  |  |
| Grand             | Total | 5,785 | (54.6) | 2,717 | (25.6) | 1,256 | (11.9) | 840 | (7.9) | 10,598 |        |  |  |
| Granu             | iulai | 3,703 | (04.0) | 2,111 | (23.0) | 1,200 | (11.9) | 040 | (1.3) | 10,530 |        |  |  |

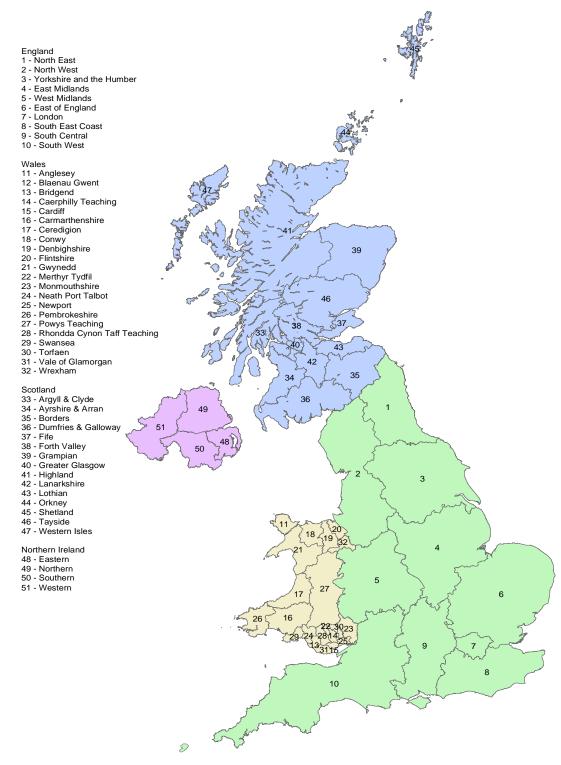
Figure 8 Respiratory admissions by month and age, 2004 - 2006



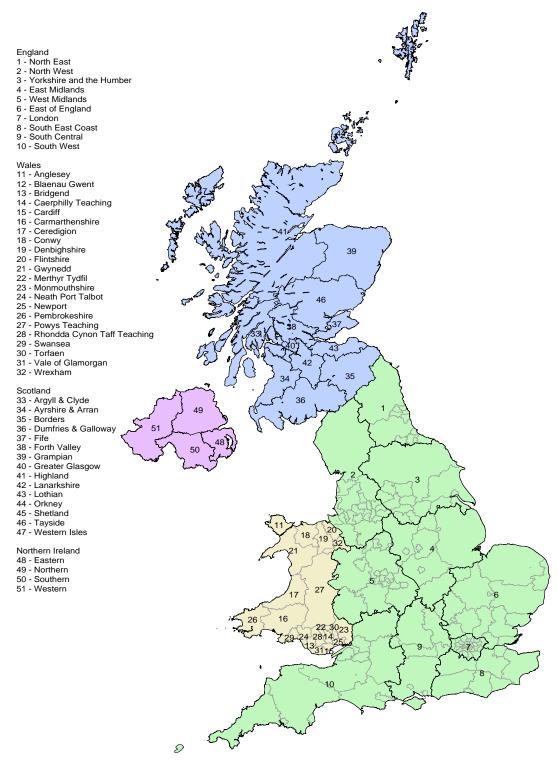
| Table 9 Admissions                                                                                                                                                         | by mon                                                                                                                                                                                                                                                                                                                                                                      | th by Ni                                                                                                                                                                                                                                                 | HS trust                                                                                                                                                                                                                                                                                                                                    | t, 2004 ·                                                                                                                                                                                                                                          | - 2006                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                | Me                                                                                                                                                                                                                                                                | onth                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year NHS Trust                                                                                                                                                             | Janu<br>n                                                                                                                                                                                                                                                                                                                                                                   | uary<br>%                                                                                                                                                                                                                                                | Febru<br>n                                                                                                                                                                                                                                                                                                                                  | uary<br>%                                                                                                                                                                                                                                          | Mar<br>n                                                                                                                                                                                                                                                                                                                                        | ch<br>%                                                                                                                                                                    | Apr<br>n                                                                                                                                                                                                                                                                                          | ril<br>%                                                                                                                                                                                                                                                                                                      | Mag<br>n                                                                                                                                                                                                                                                                                                                                               | y<br>%                                                                                                                                                                                                                                                                | Jur<br>n                                                                                                                                                                                                                                                                       | ie<br>%                                                                                                                                                                                                                                                           | July<br>n                                                                                                                                                                                                                                                                                                             | y<br>%                                                                                                                                                                                                                                                                                        | Augu<br>n                                                                                                                                                                                                                                                                                                                                                                                              | st<br>%                                                                                                                                                                                                                                                                            | Septer<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nber<br>%                                                                                                                                                                                                                                                    | Octob<br>n                                                                                                                                                                                                                                                                                                                                       | oer<br>%                                                                                                                                                                                                                                                                                               | Nover<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nber<br>%                                                                                                                                                                                                                                                                            | Decen<br>n                                                                                                                                                                                   | nber<br>%                                                                                                                                                                               | Tot<br>n                                                                                                                                                                                       | al<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2004 A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>H<br>J<br>K<br>L<br>L<br>N<br>N<br>P<br>P<br>R<br>R<br>S<br>T<br>U<br>V<br>W<br>W<br>V<br>W<br>V<br>V<br>W<br>V<br>2004 Total | 333<br>399<br>533<br>1300<br>112<br>5<br>200<br>999<br>100<br>777<br>299<br>300<br>288<br>488<br>888<br>487<br>433<br>188<br>299<br>411<br>1088<br>699<br>899<br>00<br><b>1,268</b>                                                                                                                                                                                         | (7)<br>(8)<br>(9)<br>(7)<br>(10)<br>(11)<br>(12)<br>(12)<br>(12)<br>(13)<br>(8)<br>(8)<br>(9)<br>(9)<br>(7)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)<br>(11)                                                                                      | 35<br>35<br>24<br>86<br>8<br>9<br>76<br>4<br>4<br>71<br>20<br>24<br>33<br>57<br>62<br>24<br>33<br>57<br>62<br>88<br>87<br>62<br>83<br>99<br>99<br>92<br>70<br>88<br>80<br>0<br>0<br>1188                                                                                                                                                    | (8)<br>(12)<br>(9)<br>(9)<br>(8)<br>(7)<br>(18)<br>(6)<br>(5)<br>(10)<br>(9)<br>(11)<br>(8)<br>(10)<br>(9)<br>(11)<br>(9)<br>(11)<br>(9)<br>(9)<br>(11)<br>(9)<br>(9)<br>(11)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9 | 41<br>34<br>26<br>58<br>165<br>58<br>104<br>2<br>19<br>68<br>12<br>21<br>42<br>21<br>42<br>21<br>42<br>21<br>31<br>33<br>103<br>48<br>85<br>53<br>103<br>48<br>48<br>49<br>49<br>49<br>49<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                           | (9)<br>(12)<br>(10)<br>(10)<br>(9)<br>(9)<br>(9)<br>(5)<br>(6)<br>(6)<br>(8)<br>(15)<br>(15)<br>(15)<br>(11)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10        | 37<br>20<br>25<br>49<br>146<br>102<br>21<br>83<br>8<br>8<br>4<br>45<br>26<br>28<br>8<br>45<br>7<br>70<br>26<br>6<br>27<br>70<br>70<br>0<br>1,135                                                                                                                                                  | (8)<br>(7)<br>(9)<br>(8)<br>(8)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(7)<br>(7)<br>(7)<br>(8)<br>(8)<br>(8)<br>(8)<br>(6)<br>(7)<br>(7)<br>(9)<br>(8)<br>(8)<br>(8)<br>(6)<br>(7)<br>(7)<br>(9)<br>(8)<br>(8)<br>(8)<br>(8)<br>(9)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8 | 34<br>12<br>15<br>145<br>149<br>100<br>2<br>36<br>76<br>4<br>4<br>82<br>23<br>25<br>27<br>44<br>74<br>41<br>13<br>42<br>32<br>27<br>15<br>38<br>00<br>0<br>112<br>4<br>5<br>5<br>149<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                            | (8)<br>(4)<br>(6)<br>(8)<br>(9)<br>(5)<br>(12)<br>(12)<br>(10)<br>(10)<br>(7)<br>(10)<br>(7)<br>(8)<br>(8)<br>(8)<br>(8)<br>(11)<br>(8)<br>(8)<br>(11)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9 | 33<br>16<br>13<br>42<br>159<br>90<br>4<br>30<br>77<br>9<br>67<br>77<br>9<br>67<br>77<br>34<br>33<br>51<br>84<br>45<br>53<br>51<br>12<br>29<br>23<br>60<br>53<br>10<br>12<br>12<br>15<br>12<br>15<br>12<br>15<br>12<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | (7)<br>(6)<br>(7)<br>(9)<br>(9)<br>(10)<br>(11)<br>(8)<br>(9)<br>(11)<br>(8)<br>(9)<br>(10)<br>(9)<br>(10)<br>(9)<br>(9)<br>(10)<br>(9)<br>(8)<br>(8)<br>(9)<br>(7)<br>(7)<br>(8)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7     | 39<br>17<br>21<br>45<br>151<br>89<br>0<br>25<br>57<br>66<br>12<br>26<br>27<br>53<br>76<br>6<br>44<br>37<br>7<br>17<br>34<br>29<br>68<br>45<br>80<br>0<br>0<br><b>1,063</b>                                                                                                                                            | (9)<br>(6)<br>(8)<br>(8)<br>(8)<br>(8)<br>(9)<br>(7)<br>(6)<br>(7)<br>(7)<br>(7)<br>(8)<br>(10)<br>(9)<br>(7)<br>(7)<br>(7)<br>(8)<br>(0)<br>(0)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                         | 28<br>23<br>39<br>158<br>74<br>2<br>22<br>61<br>5<br>67<br>72<br>21<br>41<br>33<br>3<br>67<br>72<br>36<br>67<br>72<br>36<br>67<br>72<br>36<br>67<br>44<br>47<br>72<br>36<br>0<br>18<br>28<br>23<br>76<br>44<br>44<br>99<br>0<br>0<br>18                                                                                                                                                                | (6)<br>(8)<br>(7)<br>(9)<br>(6)<br>(5)<br>(7)<br>(7)<br>(6)<br>(8)<br>(5)<br>(11)<br>(10)<br>(8)<br>(7)<br>(9)<br>(11)<br>(8)<br>(6)<br>(8)<br>(7)<br>(9)<br>(0)<br>(0)<br>(7)<br>(7)<br>(7)                                                                                       | 43<br>24<br>19<br>46<br>153<br>80<br>9<br>85<br>17<br>37<br>15<br>41<br>84<br>35<br>47<br>9<br>9<br>29<br>27<br>80<br>52<br>52<br>58<br>0<br><b>1,087</b>                                                                                                                                                                                                                                                                                                                  | (10)<br>(8)<br>(7)<br>(7)<br>(7)<br>(9)<br>(9)<br>(11)<br>(10)<br>(8)<br>(11)<br>(10)<br>(4)<br>(4)<br>(7)<br>(9)<br>(6)<br>(8)<br>(5)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(6)<br>(0)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7 | 42<br>24<br>11<br>46<br>134<br>97<br>25<br>69<br>7<br>66<br>69<br>9<br>7<br>7<br>66<br>61<br>9<br>9<br>25<br>32<br>48<br>8<br>70<br>51<br>77<br>31<br>34<br>9<br>61<br>17<br>73<br>1<br>34<br>9<br>9<br>0<br>17<br>7<br>0<br>0<br>0<br>17<br>17<br>9<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7             | (9)<br>(8)<br>(4)<br>(8)<br>(8)<br>(8)<br>(7)<br>(8)<br>(9)<br>(7)<br>(8)<br>(9)<br>(7)<br>(9)<br>(9)<br>(7)<br>(9)<br>(9)<br>(7)<br>(9)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(8)<br>(8)<br>(6)<br>(2)<br>(9)<br>(2)<br>(9)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2 | 43<br>30<br>24<br>59<br>143<br>103<br>4<br>27<br>57<br>6<br>6<br>77<br>19<br>35<br>51<br>51<br>55<br>51<br>51<br>53<br>8<br>43<br>90<br>56<br>80<br>0<br>0<br>1,187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (10)<br>(11)<br>(9)<br>(10)<br>(8)<br>(9)<br>(9)<br>(9)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(8)<br>(8)<br>(8)<br>(9)<br>(7)<br>(9)<br>(9)<br>(10)<br>(11)<br>(11)<br>(9)<br>(9)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10                       | 35<br>27<br>30<br>49<br>148<br>24<br>36<br>70<br>3<br>76<br>21<br>28<br>26<br>31<br>28<br>26<br>31<br>52<br>43<br>55<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35 | (8)<br>(9)<br>(11)<br>(8)<br>(12)<br>(12)<br>(8)<br>(4)<br>(9)<br>(12)<br>(8)<br>(8)<br>(8)<br>(9)<br>(10)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(10)<br>(88)                           | 443<br>285<br>264<br>584<br>1,778<br>1,165<br>44<br>308<br>859<br>82<br>883<br>226<br>373<br>337<br>553<br>982<br>547<br>585<br>167<br>366<br>392<br>983<br>648<br>964<br>20<br>13,838         | (3.2)<br>(2.1)<br>(4.2)<br>(12.8)<br>(8.4)<br>(2.2)<br>(12.8)<br>(8.4)<br>(2.2)<br>(1.6)<br>(2.7)<br>(2.4)<br>(4.0)<br>(4.2)<br>(1.2)<br>(2.6)<br>(2.8)<br>(7.1)<br>(4.2)<br>(2.6)<br>(2.8)<br>(7.1)<br>(4.7)<br>(7.0)<br>(4.7)<br>(7.0)<br>(4.7)<br>(7.0)<br>(4.7)<br>(7.0)<br>(4.7)<br>(7.0)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(4.7)<br>(7.1)<br>(7.1)<br>(4.7)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1)<br>(7.1 |
| 2005 A<br>B<br>C<br>C<br>F<br>G<br>G<br>H<br>I<br>I<br>K<br>K<br>L<br>L<br>N<br>N<br>O<br>P<br>Q<br>R<br>R<br>S<br>T<br>U<br>V<br>V<br>V<br>V<br>2005 Total                | 1,200<br>33<br>32<br>24<br>63<br>32<br>22<br>4<br>65<br>5<br>22<br>22<br>77<br>77<br>18<br>65<br>22<br>23<br>77<br>77<br>18<br>65<br>5<br>22<br>23<br>32<br>8<br>65<br>5<br>32<br>33<br>23<br>32<br>4<br>77<br>77<br>18<br>65<br>5<br>22<br>23<br>77<br>77<br>77<br>18<br>65<br>5<br>22<br>24<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77 | (9.2)<br>(8)<br>(14)<br>(9)<br>(11)<br>(10)<br>(10)<br>(7)<br>(7)<br>(7)<br>(9)<br>(9)<br>(7)<br>(7)<br>(7)<br>(9)<br>(9)<br>(7)<br>(7)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8                                             | 39<br>20<br>31<br>37<br>97<br>97<br>1<br>1<br>31<br>37<br>97<br>2<br>2<br>1<br>36<br>5<br>5<br>71<br>2<br>2<br>6<br>4<br>36<br>5<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>5<br>71<br>2<br>2<br>9<br>9<br>20<br>0<br>1<br>1<br>37<br>97<br>2<br>97<br>20<br>0<br>1<br>1<br>37<br>1<br>37<br>1<br>37<br>1<br>37<br>1<br>37<br>1<br>37<br>1<br>37 | (8.6)<br>(9)<br>(11)<br>(6)<br>(6)<br>(6)<br>(7)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10                                                                                                 | 45<br>13<br>22<br>62<br>1300<br>9<br>9<br>26<br>6<br>7<br>9<br>9<br>79<br>9<br>26<br>6<br>7<br>9<br>79<br>26<br>6<br>25<br>25<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>29<br>28<br>29<br>29<br>28<br>29<br>29<br>29<br>29<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | (9.0)<br>(11)<br>(6)<br>(8)<br>(11)<br>(9)<br>(9)<br>(9)<br>(18)<br>(8)<br>(8)<br>(8)<br>(8)<br>(7)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10         | 1,133<br>31<br>22<br>24<br>50<br>129<br>29<br>29<br>29<br>29<br>29<br>4<br>65<br>57<br>57<br>18<br>30<br>34<br>4<br>55<br>81<br>18<br>30<br>34<br>18<br>18<br>30<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                                                                      | (7)<br>(9)<br>(9)<br>(9)<br>(9)<br>(8)<br>(4)<br>(4)<br>(9)<br>(4)<br>(4)<br>(7)<br>(5)<br>(7)<br>(6)<br>(7)<br>(8)<br>(9)<br>(10)<br>(7)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(9)                                                                                                                           | 40<br>23<br>20<br>43<br>128<br>72<br>4<br>26<br>67<br>73<br>30<br>60<br>23<br>26<br>67<br>23<br>26<br>67<br>23<br>26<br>67<br>23<br>26<br>67<br>23<br>26<br>54<br>40<br>23<br>23<br>26<br>60<br>23<br>26<br>28<br>37<br>95<br>54<br>95<br>54<br>90<br>20<br>0<br>128<br>20<br>0<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | (8.1)<br>(10)<br>(10)<br>(7)<br>(7)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(14)<br>(7)<br>(7)<br>(9)<br>(6)<br>(8)<br>(8)<br>(7)<br>(7)<br>(7)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7          | 34<br>11<br>24<br>33<br>31<br>26<br>5<br>5<br>37<br>6<br>9<br>9<br>9<br>83<br>36<br>6<br>6<br>6<br>9<br>9<br>83<br>36<br>5<br>5<br>37<br>6<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                           | (10-3)<br>(8)<br>(5)<br>(9)<br>(6)<br>(8)<br>(9)<br>(10)<br>(11)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10                                                                                                                                                   | 37           16           25           53           142           103           4           366           72           111           76           21           28           165           77           44           52           30           300           72           58           61           27           1,163 | (7.7)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(8)<br>(8)<br>(11)<br>(8)<br>(8)<br>(11)<br>(8)<br>(8)<br>(5)<br>(11)<br>(8)<br>(5)<br>(11)<br>(8)<br>(8)<br>(7)<br>(7)<br>(8)<br>(8)<br>(7)<br>(7)<br>(8)<br>(8)<br>(7)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9     | 31<br>8<br>16<br>43<br>130<br>6<br>23<br>51<br>7<br>7<br>3<br>25<br>25<br>24<br>6<br>6<br>51<br>7<br>7<br>3<br>25<br>24<br>4<br>6<br>6<br>56<br>77<br>41<br>23<br>44<br>21<br>26<br>66<br>56<br>77<br>7<br>3<br>41<br>21<br>23<br>41<br>21<br>25<br>25<br>24<br>41<br>20<br>25<br>11<br>20<br>25<br>25<br>24<br>41<br>20<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 | (7.7)<br>(3)<br>(6)<br>(7)<br>(9)<br>(8)<br>(12)<br>(7)<br>(6)<br>(8)<br>(8)<br>(12)<br>(7)<br>(8)<br>(8)<br>(8)<br>(10)<br>(7)<br>(7)<br>(9)<br>(9)<br>(10)<br>(7)<br>(7)<br>(8)<br>(5)<br>(5)<br>(7)<br>(7)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9 | 300<br>20<br>19<br>54<br>115<br>5<br>85<br>2<br>7<br>66<br>5<br>5<br>7<br>66<br>5<br>5<br>7<br>66<br>5<br>5<br>7<br>8<br>2<br>2<br>1<br>34<br>30<br>50<br>50<br>50<br>7<br>6<br>6<br>8<br>34<br>45<br>8<br>5<br>34<br>45<br>9<br>8<br>34<br>45<br>9<br>9<br>19<br>54<br>19<br>54<br>19<br>54<br>19<br>54<br>54<br>54<br>50<br>19<br>54<br>54<br>54<br>54<br>54<br>56<br>56<br>57<br>66<br>56<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | (7.9)<br>(7)<br>(9)<br>(9)<br>(9)<br>(8)<br>(8)<br>(4)<br>(4)<br>(8)<br>(8)<br>(8)<br>(8)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10                                                                                                     | 31<br>23<br>19<br>45<br>75<br>3<br>20<br>76<br>6<br>3<br>20<br>6<br>3<br>6<br>6<br>3<br>6<br>6<br>1<br>1<br>3<br>3<br>9<br>6<br>3<br>6<br>3<br>9<br>6<br>3<br>6<br>3<br>6<br>3<br>6<br>3<br>6<br>7<br>5<br>3<br>20<br>7<br>5<br>5<br>5<br>3<br>20<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | (8.0)<br>(7)<br>(10)<br>(7)<br>(8)<br>(8)<br>(8)<br>(7)<br>(6)<br>(9)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10                                                                                                                                                                   | 37<br>24<br>22<br>47<br>117<br>110<br>4<br>30<br>4<br>30<br>56<br>68<br>82<br>30<br>31<br>30<br>56<br>68<br>69<br>95<br>68<br>69<br>95<br>58<br>69<br>95<br>28<br>21<br>22<br>22<br>47<br>77<br>77<br>58<br>69<br>92<br>82<br>22<br>23<br>24<br>22<br>24<br>7<br>24<br>22<br>22<br>24<br>7<br>24<br>22<br>22<br>24<br>7<br>22<br>22<br>24<br>7<br>7<br>24<br>22<br>22<br>22<br>22<br>24<br>7<br>7<br>24<br>22<br>22<br>22<br>24<br>7<br>7<br>24<br>22<br>22<br>22<br>24<br>7<br>7<br>5<br>7<br>5<br>6<br>6<br>6<br>8<br>22<br>22<br>22<br>24<br>7<br>7<br>5<br>7<br>5<br>6<br>6<br>6<br>8<br>20<br>22<br>22<br>22<br>24<br>7<br>7<br>5<br>7<br>5<br>6<br>6<br>8<br>20<br>30<br>95<br>5<br>6<br>6<br>8<br>20<br>30<br>95<br>5<br>6<br>8<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | (8.6)<br>(10)<br>(10)<br>(8)<br>(8)<br>(8)<br>(8)<br>(10)<br>(9)<br>(9)<br>(11)<br>(10)<br>(9)<br>(9)<br>(11)<br>(10)<br>(9)<br>(9)<br>(11)<br>(10)<br>(9)<br>(12)<br>(11)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12                                                            | 32<br>21<br>25<br>50<br>137<br>5<br>5<br>30<br>7<br>5<br>5<br>89<br>9<br>34<br>23<br>21<br>47<br>72<br>56<br>62<br>24<br>36<br>46<br>82<br>53<br>36<br>99<br>93<br>6<br>1,249                | (8)<br>(8)<br>(9)<br>(9)<br>(9)<br>(10)<br>(10)<br>(10)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(12)<br>(10)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13)<br>(13          | 420<br>233<br>271<br>580<br>1,515<br>50<br>337<br>853<br>96<br>6884<br>274<br>355<br>615<br>1,017<br>581<br>665<br>180<br>413<br>408<br>908<br>408<br>908<br>401<br>391<br>391<br>14,056       | (3.0)<br>(1.7)<br>(4.1)<br>(10.8)<br>(8.0)<br>(0.4)<br>(2.4)<br>(4.1)<br>(2.5)<br>(2.1)<br>(4.4)<br>(4.7)<br>(2.5)<br>(2.1)<br>(4.1)<br>(4.7)<br>(2.9)<br>(2.9)<br>(5.0)<br>(5.3)<br>(5.3)<br>(2.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2006 A<br>B<br>C<br>D<br>F<br>G<br>H<br>H<br>J<br>J<br>L<br>L<br>N<br>O<br>O<br>R<br>S<br>T<br>U<br>V<br>V<br>V<br>2006 Total                                              | 30<br>15<br>35<br>68<br>134<br>100<br>4<br>29<br>75<br>5<br>93<br>28<br>28<br>29<br>54<br>108<br>42<br>29<br>54<br>108<br>42<br>29<br>54<br>108<br>42<br>93<br>54<br>108<br>42<br>93<br>54<br>108<br>42<br>93<br>104<br>105<br>106<br>106<br>107<br>107<br>107<br>107<br>107<br>107<br>107<br>107                                                                           | (7)<br>(12)<br>(12)<br>(8)<br>(9)<br>(9)<br>(10)<br>(10)<br>(11)<br>(11)<br>(8)<br>(10)<br>(10)<br>(9)<br>(10)<br>(10)<br>(9)<br>(10)<br>(9)<br>(10)<br>(9)<br>(10)<br>(9)<br>(9)<br>(10)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12 | 47<br>26<br>29<br>59<br>59<br>110<br>104<br>7<br>7<br>80<br>6<br>6<br>117<br>33<br>321<br>45<br>103<br>34<br>7<br>66<br>35<br>66<br>63<br>55<br>66<br>9<br>9<br>9<br>9<br>2<br>34<br>4<br>1,186                                                                                                                                             | (10)<br>(12)<br>(10)<br>(7)<br>(10)<br>(19)<br>(9)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8                                                                                                                            | 35<br>23<br>29<br>47<br>146<br>89<br>4<br>17<br>76<br>77<br>22<br>25<br>38<br>822<br>47<br>114<br>466<br>417<br>73<br>39<br>64<br>64<br>473<br>39<br>64<br>51,264                                                                                                                                                                               | (8)<br>(10)<br>(10)<br>(8)<br>(9)<br>(11)<br>(5)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(11)<br>(6)<br>(9)<br>(11)<br>(6)<br>(8)<br>(11)<br>(12)<br>(8)<br>(11)<br>(8) | 27<br>13<br>16<br>4<br>133<br>91<br>4<br>7<br>7<br>8<br>8<br>29<br>40<br>0<br>22<br>50<br>80<br>80<br>22<br>50<br>80<br>80<br>64<br>46<br>17<br>7<br>50<br>80<br>80<br>80<br>80<br>91<br>11<br>82<br>83<br>7<br>1<br>11<br>8<br>8<br>8<br>8<br>91<br>8<br>8<br>8<br>8<br>91<br>8<br>91<br>8<br>91 | (6)<br>(6)<br>(8)<br>(8)<br>(11)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10)<br>(10                                                                                                                                                                                                                       | 38<br>19<br>25<br>49<br>1366<br>87<br>2<br>88<br>80<br>6<br>74<br>19<br>32<br>17<br>64<br>88<br>39<br>63<br>30<br>40<br>88<br>30<br>40<br>88<br>57<br>79<br>38<br>1,217                                                                                                                                                                                | (8)<br>(8)<br>(9)<br>(9)<br>(8)<br>(6)<br>(9)<br>(9)<br>(8)<br>(8)<br>(8)<br>(6)<br>(10)<br>(7)<br>(10)<br>(7)<br>(11)<br>(9)<br>(9)<br>(10)<br>(8)<br>(8)                                                                                                            | 39<br>17<br>200<br>36<br>33<br>84<br>3<br>8<br>4<br>3<br>5<br>5<br>7<br>8<br>26<br>55<br>55<br>97<br>7<br>47<br>60<br>19<br>9<br>23<br>79<br>57<br>80<br>26<br>1,159                                                                                                           | (9)<br>(8)<br>(7)<br>(6)<br>(8)<br>(8)<br>(9)<br>(7)<br>(7)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(10)<br>(6)<br>(6)<br>(8)<br>(9)<br>(9)<br>(10)<br>(6)<br>(8)<br>(9)<br>(9)<br>(10)<br>(6)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8 | 37<br>15<br>20<br>48<br>151<br>81<br>2<br>30<br>78<br>2<br>58<br>20<br>35<br>19<br>58<br>88<br>31<br>4<br>46<br>23<br>97<br>50<br>68<br>27<br>1,134                                                                                                                                                                   | (8)<br>(7)<br>(7)<br>(8)<br>(9)<br>(7)<br>(10)<br>(9)<br>(7)<br>(7)<br>(8)<br>(8)<br>(6)<br>(6)<br>(6)<br>(7)<br>(10)<br>(6)<br>(9)<br>(7)<br>(10)<br>(6)<br>(8)<br>(8)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(8)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7 | 35<br>22<br>22<br>31<br>39<br>78<br>2<br>30<br>63<br>3<br>3<br>57<br>22<br>23<br>11<br>23<br>72<br>23<br>6<br>6<br>46<br>13<br>35<br>57<br>50<br>50<br>34<br>4<br>1,124                                                                                                                                                                                                                                | (8)<br>(10)<br>(7)<br>(7)<br>(9)<br>(7)<br>(6)<br>(10)<br>(7)<br>(4)<br>(11)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                  | 35<br>21<br>21<br>47<br>47<br>141<br>86<br>3<br>3<br>25<br>56<br>0<br>57<br>66<br>27<br>70<br>70<br>36<br>50<br>50<br>17<br>38<br>80<br>52<br>33<br>80<br>52<br>33<br>80<br>52<br>1,107                                                                                                                                                                                                                                                                                    | (8)<br>(7)<br>(8)<br>(9)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8                                                                                                                                                                | 46<br>12<br>27<br>43<br>124<br>85<br>0<br>23<br>86<br>55<br>28<br>35<br>29<br>65<br>29<br>65<br>29<br>65<br>77<br>75<br>1<br>51<br>54<br>44<br>29<br>91<br>45<br>54<br>37<br>37<br>191                                                                                                                                                           | (10)<br>(5)<br>(9)<br>(8)<br>(8)<br>(0)<br>(7)<br>(7)<br>(9)<br>(9)<br>(11)<br>(10)<br>(7)<br>(10)<br>(7)<br>(10)<br>(9)<br>(10)<br>(9)<br>(83)                                                                                                                                                        | 32<br>26<br>28<br>49<br>32<br>32<br>77<br>77<br>27<br>27<br>77<br>27<br>60<br>99<br>94<br>34<br>35<br>52<br>14<br>43<br>35<br>52<br>14<br>43<br>35<br>99<br>92<br>27<br>2<br>34<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (7)<br>(12)<br>(9)<br>(8)<br>(8)<br>(10)<br>(16)<br>(10)<br>(8)<br>(10)<br>(9)<br>(9)<br>(9)<br>(8)<br>(10)<br>(9)<br>(9)<br>(8)<br>(10)<br>(9)<br>(8)<br>(8)<br>(10)<br>(9)<br>(8)<br>(8)<br>(8)<br>(8)<br>(8)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9 | 48<br>17<br>29<br>40<br>117<br>113<br>31<br>107<br>73<br>31<br>17<br>73<br>39<br>96<br>55<br>55<br>17<br>74<br>22<br>33<br>98<br>55<br>55<br>17<br>74<br>23<br>33<br>98<br>60<br>34<br>1,235 | (11)<br>(8)<br>(10)<br>(7)<br>(10)<br>(8)<br>(10)<br>(12)<br>(14)<br>(8)<br>(6)<br>(6)<br>(6)<br>(8)<br>(8)<br>(8)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9)<br>(9 | 449<br>226<br>301<br>1,600<br>1,086<br>315<br>909<br>73<br>907<br>2995<br>405<br>275<br>656<br>1,102<br>503<br>656<br>188<br>442<br>367<br>1,046<br>642<br>877<br>1,046<br>642<br>877<br>1,046 | (3.1)<br>(1.6)<br>(2.1)<br>(1.2)<br>(7.6)<br>(0.3)<br>(2.2)<br>(6.3)<br>(2.1)<br>(2.3)<br>(2.3)<br>(2.1)<br>(2.8)<br>(1.3)<br>(3.1)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)<br>(3.5)  |


| Table 10a Admissions by | / 2004 SHA / HB and | year, 2004 - 2006 |
|-------------------------|---------------------|-------------------|
|                         |                     |                   |

| <b>.</b> .                               | <b>2</b> 11                                                     |                                   |                                           | Ye                            |                                           |                               | _                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|------------------------------------------|-----------------------------------------------------------------|-----------------------------------|-------------------------------------------|-------------------------------|-------------------------------------------|-------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Country                                  | SHA                                                             | 200                               |                                           | 200                           |                                           | 200                           | -                                | n<br>21<br>50<br>71<br>1,357<br>1,462<br>905<br>1,513<br>1,867<br>1,198<br>1,830<br>1,753<br>2,248<br>1,038<br>1,706<br>1,407<br>923<br>1,213<br>1,161<br>1,557<br>1,030<br>1,525<br>1,244<br>1,557<br>1,030<br>1,525<br>1,294<br>1,557<br>1,207<br>1,299<br>1,346<br>635<br>552<br>38,340<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|                                          |                                                                 | n                                 | %                                         | n                             | %                                         | n                             | %                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %        |
| Channel Islands                          | Guernsey (and Sark)                                             | 6                                 | (0.0)                                     | 10                            | (0.1)                                     | 5                             | (0.0)                            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.      |
|                                          | Jersey                                                          | 11                                | (0.1)                                     | 24                            | (0.2)                                     | 15                            | (0.1)                            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (o.      |
| Channel Islands T                        | otal                                                            | 17                                | (0.1)                                     | 34                            | (0.2)                                     | 20                            | (0.1)                            | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.      |
| England                                  | Northumberland, Tyne & Wear                                     | 454                               | (3.3)                                     | 460                           | (3.3)                                     | 443                           | (3.1)                            | 1 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3.      |
| Ingiana                                  | County Durham and Tees Valley                                   | 475                               | (3.4)                                     | 466                           | (3.3)                                     | 521                           | (3.6)                            | n           21           50           71           1,357           1,462           905           1,1357           1,462           905           1,187           1,1867           1,198           1,753           2,248           1,706           1,776           1,706           1,726           1,1,407           923           1,1,213           1,161           1,557           1,294           1,542           1,131           2,307           1,294           1,346           635           552           38,340           46           24           30           24           30           24           30           24           30           24           30           24           33           329           322           338           322 <tr< td=""><td>(3</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                      | (3       |
|                                          | North and East Yorkshire and Northern Lincolnshire              | 321                               | (2.3)                                     | 291                           | (2.1)                                     | 293                           | (2.0)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2       |
|                                          | South Yorkshire                                                 | 462                               | (3.3)                                     | 543                           | (3.9)                                     | 508                           | (3.5)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3       |
|                                          | West Yorkshire                                                  | 610                               | (4.4)                                     | 629                           | (4.5)                                     | 628                           | (4.4)                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4       |
|                                          | Cumbria and Lancashire                                          | 385                               | (2.8)                                     | 405                           | (2.9)                                     | 408                           | (2.8)                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2       |
|                                          | Greater Manchester                                              | 554                               | (4.0)                                     | 628                           | (4.5)                                     | 648                           | (4.5)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4       |
|                                          | Cheshire & Merseyside                                           | 623                               | (4.5)                                     | 554                           | (3.9)                                     | 576                           | (4.0)                            | 1,753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (4       |
|                                          | Trent                                                           | 808                               | (5.8)                                     | 710                           | (5.1)                                     | 730                           | (5.1)                            | 2,248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (5       |
|                                          | Shropshire and Staffordshire                                    | 323                               | (2.3)                                     | 343                           | (2.4)                                     | 372                           | (2.6)                            | 1,038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2       |
|                                          | Birmingham and the Black Country                                | 522                               | (3.8)                                     | 523                           | (3.7)                                     | 661                           | (4.6)                            | 1,706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (4       |
|                                          | West Midlands South                                             | 253                               | (1.8)                                     | 254                           | (1.8)                                     | 308                           | (2.1)                            | 815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1       |
|                                          | Leicestershire, Northamptonshire and Rutland                    | 630                               | (4.6)                                     | 563                           | (4.0)                                     | 533                           | (3.7)                            | 1,726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (4       |
|                                          | Norfolk, Suffolk and Cambridgeshire                             | 508                               | (3.7)                                     | 450                           | (3.2)                                     | 449                           | (3.1)                            | 1,407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3       |
|                                          | Essex                                                           | 332                               | (2.4)                                     | 285                           | (2.0)                                     | 306                           | (2.1)                            | 923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2       |
|                                          | Bedfordshire and Hertfordshire                                  | 397                               | (2.9)                                     | 416                           | (3.0)                                     | 400                           | (2.8)                            | 1,213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2       |
|                                          | Thames Valley                                                   | 408                               | (2.9)                                     | 407                           | (2.9)                                     | 346                           | (2.4)                            | 1,161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2       |
|                                          | North East London                                               | 541                               | (3.9)                                     | 491                           | (3.5)                                     | 525                           | (3.7)                            | 1,557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3       |
|                                          | North Central London                                            | 355                               | (2.6)                                     | 339                           | (2.4)                                     | 336                           | (2.3)                            | 1,030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2       |
|                                          | North West London                                               | 488                               | (3.5)                                     | 546                           | (3.9)                                     | 491                           | (3.4)                            | 1,525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3       |
|                                          | South West London                                               | 453                               | (3.3)                                     | 428                           | (3.0)                                     | 413                           | (2.9)                            | 1,294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3       |
|                                          | South East London                                               | 523                               | (3.8)                                     | 506                           | (3.6)                                     | 513                           | (3.6)                            | 1,542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3       |
|                                          | Kent and Medway                                                 | 385                               | (2.8)                                     | 388                           | (2.8)                                     | 358                           | (2.5)                            | 1,131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2       |
|                                          | Surrey and Sussex                                               | 795                               | (5.7)                                     | 742                           | (5.3)                                     | 770                           | (5.4)                            | n<br>211<br>500<br>711<br>1,357<br>1,462<br>905<br>1,513<br>1,867<br>1,198<br>1,867<br>1,198<br>1,867<br>1,198<br>1,863<br>1,706<br>815<br>1,726<br>1,407<br>923<br>1,213<br>1,715<br>1,224<br>1,038<br>1,706<br>815<br>1,726<br>1,407<br>1,223<br>1,213<br>1,716<br>1,726<br>1,407<br>1,225<br>1,224<br>1,557<br>1,224<br>1,557<br>1,224<br>1,557<br>1,224<br>1,557<br>1,225<br>1,224<br>1,557<br>1,224<br>1,557<br>1,224<br>1,557<br>1,224<br>1,557<br>1,224<br>1,557<br>1,224<br>1,557<br>1,224<br>1,557<br>1,224<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,557<br>1,234<br>1,525<br>1,234<br>1,525<br>1,234<br>1,525<br>1,234<br>1,316<br>46<br>35<br>552<br>38,340<br><br>24<br>38,340<br><br>24<br>38,340<br><br>38,340<br><br>38,340<br><br>38,340<br> | (5       |
|                                          | Hampshire and Isle of Wight                                     | 423                               | (3.1)                                     | 447                           | (3.2)                                     | 429                           | (3.0)                            | 1,299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3       |
|                                          | Avon, Gloucestershire and Wiltshire                             | 474                               | (3.4)                                     | 445                           | (3.2)                                     | 427                           | (3.0)                            | 1,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3       |
|                                          | Dorset and Somerset                                             | 215                               | (1.6)                                     | 206                           | (1.5)                                     | 214                           | (1.5)                            | 635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1       |
|                                          | South West Peninsula                                            | 161                               | (1.2)                                     | 208                           | (1.5)                                     | 183                           | (1.3)                            | 552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1       |
| England Total                            |                                                                 | 12,878                            | (93.1)                                    | 12,673                        | (90.2)                                    | 12,789                        | (89.3)                           | 38,340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (90      |
| sle of Man                               | Isle of Man                                                     | 10                                | (0.1)                                     | 22                            | (0.2)                                     | 14                            | (0.1)                            | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0       |
| sle of Man Total                         |                                                                 | 10                                | (0.1)                                     | 22                            | (0.2)                                     | 14                            | (0.1)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0       |
|                                          |                                                                 |                                   | (011)                                     |                               | (*)                                       |                               | (***)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| Northern Ireland                         | Eastern Health Board                                            | 9                                 | (0.1)                                     | 7                             | (0.0)                                     | 5                             | (0.0)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0       |
|                                          | Northern Health Board                                           | 3                                 | (0.0)                                     | 3                             | (0.0)                                     | 3                             | (0.0)                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0       |
|                                          | Southern Health Board                                           | 10                                | (0.1)                                     | 4                             | (0.0)                                     | 12                            | (0.1)                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0       |
|                                          | Western Health Board                                            | 8                                 | (0.1)                                     | 6                             | (0.0)                                     | 10                            | (0.1)                            | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0       |
| Northern Ireland T                       | otal                                                            | 30                                | (0.2)                                     | 20                            | (0.1)                                     | 30                            | (0.2)                            | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0       |
| Scotland                                 | Argyll and Clyde                                                | 6                                 | (0.0)                                     | 9                             | (0.1)                                     | 9                             | (0.1)                            | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0       |
| Scotland                                 |                                                                 | 10                                | . ,                                       | 6                             | · · /                                     | 9<br>14                       |                                  | 3.6)         1,462           2.0)         905           3.5)         1,513           3.4.4)         1,867           2.8)         1,198           4.5)         1,198           4.5)         1,753           5.1)         2,248           2.6)         1,038           4.6)         1,706           3.1)         1,407           2.1)         815           3.7)         1,726           3.1)         1,407           2.1)         923           2.8)         1,213           2.4)         1,161           3.7)         1,525           2.9)         1,294           3.0)         1,346           1.525         1,131           5.4)         2,307           3.0)         1,346           1.55         635           1.3)         552           9.3)         38,340           0.1)         24           0.2)         80           0.1)         24           0.2)         80           0.1)         24           0.2)         80 <td< td=""><td></td></td<>                                                                                                                                                                                                                 |          |
|                                          | Ayrshire & Arran<br>Borders                                     | 5                                 | (0.1) (0.0)                               | 20                            | (0.0)                                     | 14                            | . ,                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0       |
|                                          |                                                                 | 5                                 | . ,                                       | 11                            | (0.1)                                     | 14                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0       |
|                                          | Dumfries and Galloway<br>Fife                                   | 3                                 | (0.0)                                     | 59                            | (0.1)                                     | 66                            | . ,                              | ))         21           ))         50           ))         50           ))         71           )         905           ))         1,462           ))         905           ))         1,513           ))         1,753           ))         1,753           ))         1,766           ))         1,766           ))         1,776           ))         1,706           ))         1,776           ))         1,726           ))         1,407           )         923           ))         1,557           ))         1,525           ))         1,525           ))         1,542           ))         1,542           ))         1,542           ))         1,542           ))         1,542           ))         1,542           ))         1,542           ))         1,542           ))         1,542           ))         3,635           ))         36           ))         24           ))<                                                                                                                                                                                                                                                                     | (0       |
|                                          |                                                                 |                                   | (0.0)                                     |                               | (0.4)                                     |                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0       |
|                                          | Forth Valley                                                    | 0                                 | (0.0)                                     | 23                            | (0.2)                                     | 24                            | . ,                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0       |
|                                          | Grampian<br>Greater Glasgow                                     |                                   | (0.1)                                     | 38                            | (0.3)                                     | 30                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0       |
|                                          | Highland                                                        | 8                                 | (0.1)                                     | 30                            | (0.2)                                     | 23                            | . ,                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0       |
|                                          | Lanarkshire                                                     | 0                                 | (0.0)                                     | 15<br>18                      | (0.1)                                     | 17<br>19                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0       |
|                                          | Lothian                                                         | 19                                | (0.0) (0.1)                               | 161                           | (0.1)                                     | 149                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ()<br>(0 |
|                                          |                                                                 | 0                                 | . ,                                       |                               | · · /                                     |                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|                                          | Orkney                                                          | -                                 | (0.0)                                     | 3                             | (0.0)                                     | 5                             | . ,                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0       |
|                                          | Shotland                                                        |                                   | (0.0)                                     | 2                             | (0.0)                                     | 3<br>38                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0       |
|                                          | Shetland                                                        | 0                                 | (0, 0)                                    |                               |                                           |                               | (0.3)                            | n           21           50           1,357           1,462           905           1,1,517           1,1,807           1,1,81           1,1,867           1,1,198           1,1,753           1,1,753           1,1,763           1,1,753           1,1,766           1,706           1,706           1,706           1,708           1,1,703           91,1,213           1,1,61           1,525           1,1,517           1,030           1,525           1,1,294           1,1,542           1,1,346           1,552           38,340           466           2,307           1,346           38,340           466           24           30           24           30           24           30           322           338           322           3238           324           325 </td <td>(0</td>                                                                                                                                                                                                                                                                                                                                                             | (0       |
|                                          | Tayside                                                         | 5                                 | (0.0)                                     | 51                            | (0.4)                                     |                               | (0.0)                            | n           21           50           71           50           1,357           1,462           905           1,513           1,867           1,198           1,330           1,867           1,198           1,330           1,713           1,753           2,248           1,038           1,706           815           1,726           1,407           923           1,213           1,161           1,557           1,030           1,525           1,234           1,542           1,131           2,307           1,299           1,346           6355           552           552           38,340           46           24           30           24           33           247           328           329           8           329           8                                                                                                                                                                                                                                                                                                                                                                                                             | (0       |
| Scotland Total                           |                                                                 | 5<br>0                            | (0.0)                                     | 2                             | (0.0)                                     | 1                             | (0.0)<br>(3.0)                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2       |
| Scotland Total                           | Tayside                                                         | 5                                 |                                           |                               |                                           |                               | (0.0)<br>(3.0)                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2       |
| Wales                                    | Tayside                                                         | 5<br>0                            | (0.0)<br>(0.5)<br>(4.0)                   | 2                             | (0.0)                                     | 1                             | (3.0)                            | 940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| Wales                                    | Tayside<br>Western Isles                                        | 5<br>0<br><b>69</b>               | (0.0)<br>(0.5)                            | 2<br>448                      | (0.0)<br>(3.2)                            | 1<br><b>423</b>               | (3.0)                            | 940<br>1,699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4       |
| Scotland Total<br>Wales<br>Wales Total   | Tayside<br>Western Isles<br>Welsh Health Authorities            | 5<br>0<br>69<br>548<br>548        | (0.0)<br>(0.5)<br>(4.0)<br>(4.0)          | 2<br>448<br>566<br>566        | (0.0)<br>(3.2)<br>(4.0)<br>(4.0)          | 1<br>423<br>585<br>585        | (3.0)<br>(4.1)<br>(4.1)          | 940<br>1,699<br>1,699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2       |
| Vales<br>Vales Total<br>Non-UK / Missing | Tayside<br>Western Isles<br>Welsh Health Authorities<br>Unknown | 5<br>0<br>69<br>548<br>548<br>286 | (0.0)<br>(0.5)<br>(4.0)<br>(4.0)<br>(2.1) | 2<br>448<br>566<br>566<br>293 | (0.0)<br>(3.2)<br>(4.0)<br>(4.0)<br>(2.1) | 1<br>423<br>585<br>585<br>466 | (3.0)<br>(4.1)<br>(4.1)<br>(3.3) | 940<br>1,699<br>1,699<br>1,045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4       |
| Wales                                    | Tayside<br>Western Isles<br>Welsh Health Authorities<br>Unknown | 5<br>0<br>69<br>548<br>548        | (0.0)<br>(0.5)<br>(4.0)<br>(4.0)          | 2<br>448<br>566<br>566        | (0.0)<br>(3.2)<br>(4.0)<br>(4.0)          | 1<br>423<br>585<br>585        | (3.0)<br>(4.1)<br>(4.1)          | 940<br>1,699<br>1,699<br>1,045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4<br>(4 |


Note: The number classified as 'Unknown' is larger in this table than Table 10b due to 180 of the postcodes being introduced between the versions of the NSPD used to produce each table. This would be due to new builds or recodes.

| Country             | SHA                      | 200    | 14     | Yea<br>200 |        | 200    | 06     | Total  |         |  |
|---------------------|--------------------------|--------|--------|------------|--------|--------|--------|--------|---------|--|
| Country             | 511A                     | n 200  | %      | n 200      | %      | n 200  | %      | n      | ai<br>% |  |
|                     |                          |        | /0     |            | /0     |        | /0     | - 11   | /0      |  |
| Channel Islands     | Guernsey (and Sark)      | 6      | (0.0)  | 10         | (0.1)  | 5      | (0.0)  | 21     | (0.0)   |  |
|                     | Jersey                   | 11     | (0.1)  | 24         | (0.2)  | 15     | (0.1)  | 50     | (0.1)   |  |
| Channel Islands To  |                          | 17     | (0.1)  | 34         | (0.2)  | 20     | (0.1)  | 71     | (0.2)   |  |
|                     |                          |        | . ,    |            | . ,    |        |        |        | . ,     |  |
| England             | North East               | 929    | (6.7)  | 926        | (6.6)  | 975    | (6.8)  | 2,830  | (6.7)   |  |
| -                   | North West               | 1,562  | (11.3) | 1,591      | (11.3) | 1,639  | (11.4) | 4,792  | (11.3)  |  |
|                     | Yorkshire and the Humber | 1,393  | (10.1) | 1,463      | (10.4) | 1,441  | (10.1) | 4,297  | (10.2)  |  |
|                     | East Midlands            | 1,446  | (10.4) | 1,278      | (9.1)  | 1,280  | (8.9)  | 4,004  | (9.5)   |  |
|                     | West Midlands            | 1,098  | (7.9)  | 1,120      | (8.0)  | 1,349  | (9.4)  | 3,567  | (8.4)   |  |
|                     | East of England          | 1,238  | (8.9)  | 1,155      | (8.2)  | 1,188  | (8.3)  | 3,581  | (8.5)   |  |
|                     | London                   | 2,363  | (17.1) | 2,312      | (16.4) | 2,300  | (16.1) | 6,975  | (16.5)  |  |
|                     | South East Coast         | 1,182  | (8.5)  | 1,134      | (8.1)  | 1,131  | (7.9)  | 3,447  | (8.2)   |  |
|                     | South Central            | 832    | (6.0)  | 855        | (6.1)  | 786    | (5.5)  | 2,473  | (5.9)   |  |
|                     | South West               | 850    | (6.1)  | 859        | (6.1)  | 828    | (5.8)  | 2,537  | (6.0)   |  |
| England Total       |                          | 12,893 | (93.2) | 12,693     | (90.3) | 12,917 | (90.2) | 38,503 | (91.2)  |  |
|                     |                          |        |        | ·          |        |        |        |        |         |  |
| Isle of Man         | Isle of Man              | 10     | (0.1)  | 22         | (0.2)  | 14     | (0.1)  | 46     | (0.1)   |  |
| Isle of Man Total   |                          | 10     | (0.1)  | 22         | (0.2)  | 14     | (0.1)  | 46     | (0.1)   |  |
|                     |                          |        |        |            |        |        |        |        |         |  |
| Northern Ireland    | Eastern Health Board     | 9      | (0.1)  | 7          | (0.0)  | 5      | (0.0)  | 21     | (0.0)   |  |
|                     | Northern Health Board    | 3      | (0.0)  | 3          | (0.0)  | 3      | (0.0)  | 9      | (0.0)   |  |
|                     | Southern Health Board    | 10     | (0.1)  | 4          | (0.0)  | 12     | (0.1)  | 26     | (0.1)   |  |
|                     | Western Health Board     | 8      | (0.1)  | 6          | (0.0)  | 10     | (0.1)  | 24     | (0.1)   |  |
| Northern Ireland To | otal                     | 30     | (0.2)  | 20         | (0.1)  | 30     | (0.2)  | 80     | (0.2)   |  |
|                     |                          |        |        |            |        |        |        |        |         |  |
| Scotland            | Argyll and Clyde         | 6      | (0.0)  | 9          | (0.1)  | 10     | (0.1)  | 25     | (0.1)   |  |
|                     | Ayrshire & Arran         | 10     | (0.1)  | 6          | (0.0)  | 14     | (0.1)  | 30     | (0.1)   |  |
|                     | Borders                  | 5      | (0.0)  | 20         | (0.1)  | 16     | (0.1)  | 41     | (0.1)   |  |
|                     | Dumfries and Galloway    | 5      | (0.0)  | 11         | (0.1)  | 11     | (0.1)  | 27     | (0.1)   |  |
|                     | Fife                     | 3      | (0.0)  | 60         | (0.4)  | 67     | (0.5)  | 130    | (0.3)   |  |
|                     | Forth Valley             | 0      | (0.0)  | 24         | (0.2)  | 25     | (0.2)  | 49     | (0.1)   |  |
|                     | Grampian                 | 7      | (0.1)  | 40         | (0.3)  | 31     | (0.2)  | 78     | (0.2)   |  |
|                     | Greater Glasgow          | 8      | (0.1)  | 30         | (0.2)  | 24     | (0.2)  | 62     | (0.1)   |  |
|                     | Highland                 | 0      | (0.0)  | 15         | (0.1)  | 17     | (0.1)  | 32     | (0.1)   |  |
|                     | Lanarkshire              | 1      | (0.0)  | 18         | (0.1)  | 19     | (0.1)  | 38     | (0.1)   |  |
|                     | Lothian                  | 19     | (0.1)  | 161        | (1.1)  | 149    | (1.0)  | 329    | (0.8)   |  |
|                     | Orkney                   | 0      | (0.0)  | 3          | (0.0)  | 5      | (0.0)  | 8      | (0.0)   |  |
|                     | Shetland                 | 0      | (0.0)  | 2          | (0.0)  | 3      | (0.0)  | 5      | (0.0)   |  |
|                     | Tayside                  | 5      | (0.0)  | 51         | (0.4)  | 39     | (0.3)  | 95     | (0.2)   |  |
|                     | Western Isles            | 0      | (0.0)  | 2          | (0.0)  | 1      | (0.0)  | 3      | (0.0)   |  |
| Scotland Total      |                          | 69     | (0.5)  | 452        | (3.2)  | 431    | (3.0)  | 952    | (2.3)   |  |
|                     |                          |        |        |            |        |        |        |        |         |  |
| Wales               | Welsh Health Authorities | 548    | (4.0)  | 566        | (4.0)  | 590    | (4.1)  | 1,704  | (4.0)   |  |
| Wales Total         |                          | 548    | (4.0)  | 566        | (4.0)  | 590    | (4.1)  | 1,704  | (4.0)   |  |
|                     |                          |        | 15     |            |        |        | /:     |        |         |  |
| Non-UK / Missing    | Unknown                  | 271    | (2.0)  | 269        | (1.9)  | 325    | (2.3)  | 865    | (2.0)   |  |
| Non-UK / Missing T  | otal                     | 271    | (2.0)  | 269        | (1.9)  | 325    | (2.3)  | 865    | (2.0)   |  |
| Grand Total         |                          | 12 920 |        | 14.056     |        | 1/ 327 |        | 12 221 |         |  |
| Grand Total         |                          | 13,838 |        | 14,056     |        | 14,327 |        | 42,221 |         |  |


#### Figure 10a Map showing 2004 SHA / HB boundaries



© Crown Copyright/database right 2007. An Ordnance Survey/EDINA supplied service.



© Crown Copyright/database right 2007. An Ordnance Survey/EDINA supplied service.



© Crown Copyright/database right 2007. An Ordnance Survey/EDINA supplied service.

England is split into 10 Strategic Health Authorities and 152 Primary Care Organisations,

which comprise 148 Primary Care Trusts and 4 Care Trusts.

See Appendix O for details of the PCO and SHA structure in England.

Wales comprises a single health authority split into 22 Local Health Boards which are responsible for primary care.

Scotland is split into 15 Health Boards which are responsible for primary care.

The number of Health Boards in Scotland was recently reduced to 14 with Argyll & Clyde

being absorbed by Highland and the re-named Greater Glasgow & Clyde. The data in this report relating to Scotland has been presented by the old structure as the NSPD had not been updated at the time of production.

Northern Ireland is split into 4 Local Health and Social Care Groups which are responsible for primary care.

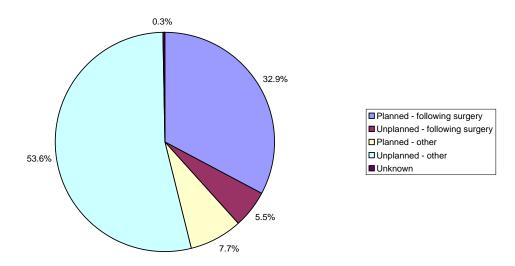

| Year    | NHS Trust        |           | 1%           | 1-<        |              | PIM Grou<br>1> - 5 |              | 15 - <    | 300/        | 20       | %+         | Tot            | al              |
|---------|------------------|-----------|--------------|------------|--------------|--------------------|--------------|-----------|-------------|----------|------------|----------------|-----------------|
| rear    | NH5 Irust        | n <1      | %            | n - <      | 3%<br>%      | 5-<1<br>n          | 15%<br>%     | 15-<<br>n | 30%<br>%    | 30<br>n  | %+<br>%    | n              | ai<br>%         |
|         |                  |           | ,,,          |            |              |                    | ,.           |           |             |          | ,,,        |                |                 |
| 2004    | Α                | 112       | (25)         | 270        | (61)         | 54                 | (12)         | 4         | (1)         | 3        | (1)        | 443            | (3.2            |
|         | B                | 67        | (24)         | 169        | (59)         | 44                 | (15)         | 4         | (1)         | 1        | (0)        | 285            | (2.1            |
|         | C<br>D           | 25<br>50  | (9)<br>(9)   | 105<br>239 | (40)<br>(41) | 99<br>242          | (38)<br>(41) | 26<br>40  | (10)<br>(7) | 9<br>13  | (3)<br>(2) | 264<br>584     | (1.9<br>(4.2    |
|         | E                | 260       | (15)         | 845        | (48)         | 495                | (28)         | 127       | (7)         | 51       | (2)        | 1,778          | (12.8           |
|         | F                | 64        | (5)          | 591        | (51)         | 415                | (36)         | 65        | (6)         | 30       | (3)        | 1,165          | (8.4            |
|         | G                | 1         | (2)          | 13         | (30)         | 23                 | (52)         | 6         | (14)        | 1        | (2)        | 44             | (0.3            |
|         | н                | 52        | (17)         | 157        | (51)         | 77                 | (25)         | 11        | (4)         | 11       | (4)        | 308            | (2.2            |
|         | 1                | 174       | (20)         | 439        | (51)         | 196                | (23)         | 34        | (4)         | 16       | (2)        | 859            | (6.2            |
|         | Г<br>К           | 22<br>187 | (27)         | 46<br>467  | (56)         | 10<br>181          | (12)         | 3<br>28   | (4)         | 1<br>20  | (1)        | 82<br>883      | (0.6<br>(6.4    |
|         | L                | 49        | (21)         | 407        | (42)         | 68                 | (30)         | 20        | (4)         | 6        | (2)        | 226            | (1.6            |
|         | M                | 73        | (20)         | 177        | (47)         | 99                 | (27)         | 15        | (4)         | 9        | (2)        | 373            | (2.7            |
|         | N                | 47        | (14)         | 180        | (53)         | 86                 | (26)         | 14        | (4)         | 10       | (3)        | 337            | (2.4            |
|         | 0                | 82        | (15)         | 396        | (72)         | 57                 | (10)         | 12        | (2)         | 6        | (1)        | 553            | (4.0            |
|         | P                | 138       | (14)         | 548        | (56)         | 259                | (26)         | 27        | (3)         | 10       | (1)        | 982            | (7.1            |
|         | Q                | 124       | (23)         | 281        | (51)         | 118                | (22)         | 18        | (3)         | 6        | (1)        | 547            | (4.0            |
|         | R<br>S           | 64<br>28  | (11)<br>(17) | 303<br>104 | (52)         | 175<br>31          | (30)         | 40<br>3   | (7)<br>(2)  | 3        | (1)<br>(1) | 585<br>167     | (4.2<br>(1.2    |
|         | т                | 109       | (30)         | 178        | (49)         | 59                 | (16)         | 16        | (4)         | 4        | (1)        | 366            | (2.6            |
|         | U                | 23        | (6)          | 175        | (45)         | 153                | (39)         | 31        | (8)         | 10       | (3)        | 392            | (2.8            |
|         | v                | 34        | (3)          | 503        | (51)         | 312                | (32)         | 75        | (8)         | 59       | (6)        | 983            | (7.1            |
|         | W                | 43        | (7)          | 361        | (56)         | 205                | (32)         | 30        | (5)         | 9        | (1)        | 648            | (4.7            |
|         | X                | 363       | (38)         | 423        | (44)         | 152                | (16)         | 20        | (2)         | 6        | (1)        | 964            | (7.0            |
| 2004 7  | Y                | 2 102     | (5)          | 8          | (40)         | 10                 | (50)         | 0         | (0)         | 206      | (5)        | 20<br>13,838   | (0.1            |
| 2004 To | ulai             | 2,192     | (15.8)       | 7,073      | (51.1)       | 3,620              | (26.2)       | 657       | (4.7)       | 296      | (2.1)      | 13,038         |                 |
| 2005    | Α                | 112       | (27)         | 217        | (52)         | 79                 | (19)         | 8         | (2)         | 4        | (1)        | 420            | (3.0            |
|         | В                | 73        | (31)         | 125        | (54)         | 27                 | (12)         | 6         | (3)         | 2        | (1)        | 233            | (1.7            |
|         | C                | 30        | (11)         | 128        | (47)         | 85                 | (31)         | 18        | (7)         | 10       | (4)        | 271            | (1.9            |
|         | D<br>E           | 65        | (11)         | 258        | (44)         | 206                | (36)         | 32        | (6)         | 19<br>43 | (3)        | 580            | (4.1            |
|         | F                | 155<br>46 | (10)         | 759<br>580 | (50)<br>(52) | 446<br>393         | (29)         | 112<br>79 | (7)         | 43<br>25 | (3)        | 1,515<br>1,123 | (10.8)<br>(8.0) |
|         | G                |           | (2)          | 13         | (26)         | 24                 | (48)         | 3         | (6)         | 9        | (18)       | 50             | (0.4            |
|         | H                | 81        | (24)         | 167        | (50)         | 72                 | (21)         | 9         | (3)         | 8        | (2)        | 337            | (2.4            |
|         | I                | 147       | (17)         | 457        | (54)         | 192                | (23)         | 41        | (5)         | 16       | (2)        | 853            | (6.1            |
|         | J                | 28        | (29)         | 57         | (59)         | 11                 | (11)         | 0         | (0)         | 0        | (0)        | 96             | (0.7            |
|         | ĸ                | 180       | (20)         | 427        | (48)         | 214                | (24)         | 46        | (5)         | 17       | (2)        | 884            | (6.3            |
|         | L                | 54        | (20)         | 126        | (46)         | 83                 | (30)         | 9         | (3)         | 2        | (1)        | 274            | (1.9            |
|         | M<br>N           | 67<br>24  | (19)<br>(8)  | 162<br>165 | (46)         | 102<br>86          | (29)<br>(29) | 16<br>14  | (5)<br>(5)  | 8<br>6   | (2)<br>(2) | 355<br>295     | (2.5<br>(2.1    |
|         | 0                | 74        | (12)         | 450        | (73)         | 71                 | (12)         | 17        | (3)         | 3        | (0)        | 615            | (4.4            |
|         | P                | 130       | (13)         | 568        | (56)         | 264                | (26)         | 41        | (4)         | 14       | (1)        | 1,017          | (7.2            |
|         | Q                | 136       | (23)         | 320        | (55)         | 114                | (20)         | 7         | (1)         | 4        | (1)        | 581            | (4.1            |
|         | R                | 96        | (14)         | 368        | (55)         | 170                | (26)         | 21        | (3)         | 10       | (2)        | 665            | (4.7            |
|         | S<br>T           | 37        | (21)         | 95         | (53)         | 44                 | (24)         | 3         | (2)         | 1        | (1)        | 180            | (1.3            |
|         | T<br>U           | 143<br>12 | (35)<br>(3)  | 182<br>144 | (44)<br>(35) | 70<br>208          | (17)<br>(51) | 14<br>34  | (3)<br>(8)  | 4<br>10  | (1)<br>(2) | 413<br>408     | (2.9<br>(2.9    |
|         | v                | 33        | (3)          | 451        | (50)         | 293                | (32)         | 78        | (9)         | 53       | (6)        | 908            | (6.5            |
|         | w                | 42        | (6)          | 418        | (60)         | 191                | (27)         | 38        | (5)         | 12       | (2)        | 701            | (5.0            |
|         | X                | 298       | (33)         | 421        | (47)         | 133                | (15)         | 29        | (3)         | 10       | (1)        | 891            | (6.3            |
|         | Y                | 89        | (23)         | 182        | (47)         | 102                | (26)         | 12        | (3)         | 6        | (2)        | 391            | (2.8            |
| 2005 To | otal             | 2,153     | (15.3)       | 7,240      | (51.5)       | 3,680              | (26.2)       | 687       | (4.9)       | 296      | (2.1)      | 14,056         |                 |
| 2006    | Α                | 101       | (22)         | 234        | (52)         | 99                 | (22)         | 13        | (3)         | 2        | (0)        | 449            | (3.1            |
| -000    | B                | 63        | (22)         | 234<br>132 | (52)         | 28                 | (22)         | 2         | (3)         | 2        | (0)        | 449<br>226     | (3.1            |
|         | C                | 42        | (14)         | 127        | (42)         | 107                | (36)         | 16        | (5)         | 9        | (3)        | 301            | (2.1            |
|         | D                | 69        | (12)         | 238        | (42)         | 196                | (34)         | 48        | (8)         | 20       | (4)        | 571            | (4.0            |
|         | Ε                | 122       | (8)          | 818        | (51)         | 518                | (32)         | 93        | (6)         | 49       | (3)        | 1,600          | (11.2           |
|         | F                | 59        | (5)          | 598        | (55)         | 340                | (31)         | 68        | (6)         | 21       | (2)        | 1,086          | (7.6            |
|         | G                | 0         | (0)          | 170        | (22)         | 21                 | (58)         | 2         | (6)         | 5        | (14)       | 36             | (0.3            |
|         | H                | 62<br>196 | (20)<br>(22) | 179<br>476 | (57)<br>(52) | 57<br>196          | (18)<br>(22) | 6<br>29   | (2)<br>(3)  | 11<br>12 | (3)        | 315<br>909     | (2.2<br>(6.3    |
|         | J                | 21        | (22)         | 36         | (32)         | 190                | (22)         | 29        | (1)         | 1        | (1)<br>(1) | 909<br>73      | (0.5            |
|         | ĸ                | 191       | (21)         | 459        | (51)         | 196                | (22)         | 43        | (5)         | 18       | (2)        | 907            | (6.3            |
|         | L                | 63        | (21)         | 135        | (45)         | 88                 | (29)         | 10        | (3)         | 3        | (1)        | 299            | (2.1            |
|         | Μ                | 84        | (21)         | 189        | (47)         | 110                | (27)         | 13        | (3)         | 9        | (2)        | 405            | (2.8            |
|         | N                | 22        | (8)          | 152        | (55)         | 76                 | (28)         | 13        | (5)         | 12       | (4)        | 275            | (1.9            |
|         | O<br>P           | 56<br>153 | (9)<br>(14)  | 508<br>622 | (78)<br>(56) | 73<br>256          | (11)<br>(23) | 13<br>50  | (2)<br>(5)  | 5<br>21  | (1)<br>(2) | 655<br>1,102   | (4.6<br>(7.7    |
|         | P<br>Q           | 128       | (14)         | 276        | (56)         | 256                | (23)         | 50        | (1)         | 10       | (2)        | 503            | (7.7            |
|         | R                | 111       | (17)         | 361        | (55)         | 129                | (20)         | 33        | (5)         | 22       | (2)        | 656            | (4.6            |
|         | S                | 31        | (16)         | 96         | (51)         | 56                 | (30)         | 5         | (3)         | 0        | (0)        | 188            | (1.3            |
|         | т                | 127       | (29)         | 204        | (46)         | 93                 | (21)         | 13        | (3)         | 5        | (1)        | 442            | (3.1            |
|         |                  | 12        | (3)          | 115        | (31)         | 180                | (49)         | 46        | (13)        | 14       | (4)        | 367            | (2.6            |
|         | U                |           |              | 500        | (E1)         | 285                | (27)         | 92        | (9)         | 103      | (10)       | 1,046          | (7.3            |
|         | v                | 28        | (3)          | 538        | (51)         |                    | . ,          |           | . ,         |          | ( )        |                |                 |
|         | v<br>w           | 31        | (5)          | 341        | (53)         | 205                | (32)         | 41        | (6)         | 24       | (4)        | 642            | (4.5            |
|         | V<br>W<br>X      | 31<br>314 | (5)<br>(36)  | 341<br>396 | (53)<br>(45) | 205<br>119         | (32)<br>(14) | 41<br>37  | (6)<br>(4)  | 24<br>11 | (4)<br>(1) | 642<br>877     | (4.9<br>(6.1    |
| 2006 To | V<br>W<br>X<br>Y | 31        | (5)          | 341        | (53)         | 205                | (32)         | 41        | (6)         | 24       | (4)        | 642            | (4.             |

Table 11 Admissions by mortality risk group by NHS trust, 2004 - 2006

| Table 12 Admissions h   | by admission type and ag  | 2004 - 2006    |
|-------------------------|---------------------------|----------------|
| Table 12 Autilissions i | Jy auniission type anu ay | e, 2004 - 2000 |

|                               |        |        | Ag     | e Group | (Years) | )      |       |        |        |        |
|-------------------------------|--------|--------|--------|---------|---------|--------|-------|--------|--------|--------|
| Admission Type                | <1     | l      | 1-4    | 4       | 5-      | 10     | 11-   | -15    | Tot    | al     |
|                               | n      | %      | n      | %       | n       | %      | n     | %      | n      | %      |
|                               |        |        |        |         |         |        |       |        |        |        |
| Planned - following surgery   | 6,067  | (44)   | 3,719  | (27)    | 2,065   | (15)   | 2,030 | (15)   | 13,881 | (32.9) |
| Unplanned - following surgery | 1,030  | (45)   | 562    | (24)    | 368     | (16)   | 347   | (15)   | 2,307  | (5.5)  |
| Planned - other               | 1,869  | (57)   | 623    | (19)    | 422     | (13)   | 354   | (11)   | 3,268  | (7.7)  |
| Unplanned - other             | 11,210 | (49)   | 5,618  | (25)    | 3,047   | (13)   | 2,775 | (12)   | 22,650 | (53.6) |
| Unknown                       | 53     | (46)   | 27     | (23)    | 21      | (18)   | 14    | (12)   | 115    | (0.3)  |
| Total                         | 20,229 | (47.9) | 10,549 | (25.0)  | 5,923   | (14.0) | 5,520 | (13.1) | 42,221 |        |

Figure 12 Admissions by admission type, 2004 - 2006



| Table <sup>·</sup> | 13 Admissions | by admission type by | NHS trust, 2 |                            |                           |           |             |            |              |                 |              |                |
|--------------------|---------------|----------------------|--------------|----------------------------|---------------------------|-----------|-------------|------------|--------------|-----------------|--------------|----------------|
| Year               | NHS Trust     | Planned - following  | g surgery    | Ad<br>Unplanned - followin | mission Type<br>g surgery | Planned   | - other     | Unplanned  | d - other    | Unknown         | Tot          |                |
|                    |               | n                    | %            | n                          | %                         | n         | %           | n          | %            | n %             | n            | %              |
| 2004               | Α             | 130                  | (29)         | 57                         | (13)                      | 7         | (2)         | 247        | (56)         | 2 (0)           | 443          | (3.2           |
|                    | B<br>C        | 81<br>71             | (28)         | 36<br>18                   | (13)                      | 22<br>6   | (8)         | 146<br>169 | (51)<br>(64) | 0 (0) 0 (0)     | 285<br>264   | (2.1<br>(1.9   |
|                    | D             | 66                   | (11)         | 67                         | (7)                       | 36        | (2)         | 415        | (64)         | 0 (0)<br>0 (0)  | 264<br>584   | (4.2)          |
|                    | E             | 530                  | (30)         | 63                         | (4)                       | 240       | (13)        | 945        | (53)         | 0 (0)           | 1,778        | (12.8          |
|                    | F             | 392                  | (34)         | 98                         | (8)                       | 25        | (2)         | 650        | (56)         | 0 (0)           | 1,165        | (8.4           |
|                    | G             | 1                    | (2)          | 1                          | (2)                       | 1         | (2)         | 41         | (93)         | 0 (0)           | 44           | (0.3           |
|                    | н             | 73                   | (24)         | 23                         | (7)                       | 55        | (18)        | 155        | (50)         | 2 (1)           | 308          | (2.2           |
|                    | J             | 379<br>29            | (44)<br>(35) | 20<br>6                    | (2)                       | 51<br>2   | (6)<br>(2)  | 409<br>45  | (48)<br>(55) | 0 (0)<br>0 (0)  | 859<br>82    | (6.2<br>(0.6   |
|                    | K             | 302                  | (33)         | 77                         | (7)                       | 107       | (12)        | 397        | (45)         | 0 (0)           | 883          | (6.4           |
|                    | L             | 36                   | (16)         | 8                          | (4)                       | 25        | (11)        | 157        | (69)         | 0 (0)           | 226          | (1.6           |
|                    | М             | 104                  | (28)         | 36                         | (10)                      | 19        | (5)         | 214        | (57)         | 0 (0)           | 373          | (2.7           |
|                    | N             | 131                  | (39)         | 29                         | (9)                       | 6         | (2)         | 171        | (51)         |                 | 337          | (2.4           |
|                    | 0             | 363                  | (66)         | 6                          | (1)                       | 62        | (11)        | 114        | (21)         | 8 (1)           | 553          | (4.0           |
|                    | P<br>Q        | 402<br>148           | (41)<br>(27) | 23<br>36                   | (2)                       | 84<br>11  | (9)         | 473<br>349 | (48)<br>(64) | 0 (0)<br>3 (1)  | 982<br>547   | (7.1<br>(4.0   |
|                    | R             | 198                  | (34)         | 31                         | (7)                       | 53        | (9)         | 302        | (52)         | 3 (1)<br>1 (0)  | 585          | (4.2           |
|                    | S             | 26                   | (16)         | 12                         | (7)                       | 14        | (8)         | 115        | (69)         | 0 (0)           | 167          | (1.2           |
|                    | т             | 126                  | (34)         | 30                         | (8)                       | 12        | (3)         | 198        | (54)         | 0 (0)           | 366          | (2.6           |
|                    | U             | 29                   | (7)          | 8                          | (2)                       | 6         | (2)         | 348        | (89)         | 1 (0)           | 392          | (2.8           |
|                    | V             | 371                  | (38)         | 71                         | (7)                       | 3         | (0)         | 538        | (55)         | 0 (0)           | 983          | (7.1           |
|                    | W<br>X        | 218                  | (34)         | 11                         | (2)                       | 23<br>233 | (4)         | 385        | (59)         | 11 (2)          | 648<br>964   | (4.7           |
|                    | X<br>Y        | 256                  | (27)         | 6                          | (1)                       | 233       | (24)        | 465<br>19  | (48)<br>(95) | 4 (0)<br>0 (0)  | 964<br>20    | (7.0<br>(0.1   |
| 2004 T             |               | 4,463                | (32.3)       | 773                        | (5.6)                     | 1,103     | (0)         | 7,467      | (54.0)       | 32 (0.2)        | 13,838       |                |
|                    |               |                      |              |                            |                           |           |             |            |              |                 |              |                |
| 2005               | A             | 129                  | (31)         | 35                         | (8)                       | 11        | (3)         | 245        | (58)         | 0 (0)           | 420          | (3.0           |
|                    | B             | 74                   | (32)         | 19                         | (8)                       | 13        | (6)         | 127        | (55)         | 0 (0)           | 233          | (1.7           |
|                    | C<br>D        | 76<br>89             | (28)<br>(15) | 12<br>75                   | (4)                       | 8<br>46   | (3)<br>(8)  | 175<br>370 | (65)<br>(64) | 0 (0) 0 (0)     | 271<br>580   | (1.9<br>(4.1   |
|                    | E             | 472                  | (31)         | 56                         | (13)                      | 138       | (9)         | 849        | (56)         | 0 (0)           | 1,515        | (10.8)         |
|                    | F             | 366                  | (33)         | 79                         | (7)                       | 23        | (2)         | 655        | (58)         | 0 (0)           | 1,123        | (8.0           |
|                    | G             | 1                    | (2)          | 3                          | (6)                       | 0         | (0)         | 46         | (92)         | 0 (0)           | 50           | (0.4)          |
|                    | н             | 100                  | (30)         | 23                         | (7)                       | 63        | (19)        | 148        | (44)         | 3 (1)           | 337          | (2.4)          |
|                    | 1             | 367                  | (43)         | 32                         | (4)                       | 72        | (8)         | 382        | (45)         | 0 (0)           | 853          | (6.1)          |
|                    | J             | 32                   | (33)         | 7                          | (7)                       | 9         | (9)         | 48         | (50)         | 0 (0)           | 96           | (0.7)          |
|                    | K<br>L        | 299<br>35            | (34)<br>(13) | 93                         | (11)                      | 91<br>25  | (10)        | 400<br>206 | (45)<br>(75) | 1 (0)<br>0 (0)  | 884<br>274   | (6.3)<br>(1.9) |
|                    | M             | 96                   | (13)         | 31                         | (3)                       | 23        | (9)<br>(6)  | 200        | (73)         | 0 (0)<br>0 (0)  | 355          | (2.5)          |
|                    | N             | 130                  | (44)         | 19                         | (6)                       | 5         | (2)         | 141        | (48)         | 0 (0)           | 295          | (2.1)          |
|                    | 0             | 381                  | (62)         | 5                          | (1)                       | 83        | (13)        | 135        | (22)         | 11 (2)          | 615          | (4.4)          |
|                    | Р             | 471                  | (46)         | 23                         | (2)                       | 32        | (3)         | 490        | (48)         | 1 (0)           | 1,017        | (7.2)          |
|                    | Q             | 143                  | (25)         | 35                         | (6)                       | 16        | (3)         | 383        | (66)         | 4 (1)           | 581          | (4.1)          |
|                    | R             | 246                  | (37)         | 21                         | (3)                       | 60        | (9)         | 338        | (51)         | 0 (0)           | 665          | (4.7           |
|                    | S<br>T        | 29<br>165            | (16)         | 9                          | (5)                       | 17        | (9)         | 125        | (69)         | 0 (0)           | 180          | (1.3           |
|                    | U             | 14                   | (40)<br>(3)  | 21<br>7                    | (5)                       | 14<br>5   | (3)<br>(1)  | 213<br>380 | (52)<br>(93) | 0 (0)<br>2 (0)  | 413<br>408   | (2.9<br>(2.9   |
|                    | v             | 327                  | (36)         | 55                         | (2)                       | 47        | (5)         | 479        | (53)         | 0 (0)           | 908          | (6.5           |
|                    | w             | 230                  | (33)         | 26                         | (4)                       | 18        | (3)         | 406        | (58)         | 21 (3)          | 701          | (5.0           |
|                    | х             | 203                  | (23)         | 2                          | (0)                       | 185       | (21)        | 492        | (55)         | 9 (1)           | 891          | (6.3)          |
|                    | Y             | 143                  | (37)         | 40                         | (10)                      | 13        | (3)         | 195        | (50)         | 0 (0)           | 391          | (2.8)          |
| 2005 T             | otal          | 4,618                | (32.9)       | 736                        | (5.2)                     | 1,015     | (7.2)       | 7,635      | (54.3)       | 52 (0.4)        | 14,056       |                |
| 2006               | Α             | 132                  | (29)         | 44                         | (10)                      | 13        | (3)         | 260        | (58)         | 0 (0)           | 449          | (3.1)          |
|                    | B             | 64                   | (28)         | 44 40                      | (10)                      | 11        | (5)         | 110        | (49)         | 1 (0)           | 226          | (1.6)          |
|                    | С             | 80                   | (27)         | 10                         | (3)                       | 21        | (7)         | 190        | (63)         | 0 (0)           | 301          | (2.1)          |
|                    | D             | 105                  | (18)         | 69                         | (12)                      | 40        | (7)         | 357        | (63)         | 0 (0)           | 571          | (4.0)          |
|                    | E             | 478                  | (30)         | 99                         | (6)                       | 94        | (6)         | 929        | (58)         | 0 (0)           | 1,600        | (11.2          |
|                    | F             | 392<br>1             | (36)         | 58                         | (5)                       | 25        | (2)         | 611        | (56)         | 0 (0)           | 1,086        | (7.6           |
|                    | G<br>H        | 1 100                | (3)<br>(32)  | 7<br>16                    | (19)                      | 0<br>72   | (0)         | 28<br>124  | (78)<br>(39) | 0 (0)<br>3 (1)  | 36<br>315    | (0.3<br>(2.2   |
|                    | n<br>I        | 379                  | (32)         | 50                         | (5)                       | 96        | (23)        | 384        | (39)         | 3 (1)<br>0 (0)  | 909          | (2.2)          |
|                    | J             | 19                   | (26)         | 16                         | (22)                      | 2         | (3)         | 36         | (42)         | 0 (0)           | 73           | (0.5           |
|                    | к             | 320                  | (35)         | 88                         | (10)                      | 117       | (13)        | 381        | (42)         | 1 (0)           | 907          | (6.3           |
|                    | L             | 41                   | (14)         | 22                         | (7)                       | 30        | (10)        | 206        | (69)         | 0 (0)           | 299          | (2.1           |
|                    | м             | 124                  | (31)         | 43                         | (11)                      | 20        | (5)         | 217        | (54)         | 1 (0)           | 405          | (2.8           |
|                    | N<br>O        | 128                  | (47)         | 20                         | (7)                       | 5         | (2)         | 121        | (44)         | 1 (0)           | 275          | (1.9           |
|                    | P             | 423<br>491           | (65)<br>(45) | 3<br>20                    | (0) (2)                   | 114<br>39 | (17)        | 115<br>552 | (18)<br>(50) | 0 (0)<br>0 (0)  | 655<br>1,102 | (4.6<br>(7.7   |
|                    | Q             | 124                  | (45)         | 14                         | (2)                       | 23        | (4)         | 339        | (67)         | 3 (1)           | 503          | (3.5           |
|                    | R             | 253                  | (39)         | 22                         | (3)                       | 112       | (17)        | 269        | (41)         | 0 (0)           | 656          | (4.6           |
|                    | S             | 29                   | (15)         | 9                          | (5)                       | 15        | (8)         | 135        | (72)         | 0 (0)           | 188          | (1.3           |
|                    | т             | 152                  | (34)         | 17                         | (4)                       | 10        | (2)         | 263        | (60)         | 0 (0)           | 442          | (3.1           |
|                    | U             | 22                   | (6)          | 8                          | (2)                       | 4         | (1)         | 333        | (91)         | 0 (0)           | 367          | (2.6           |
|                    | V             | 336                  | (32)         | 70                         | (7)                       | 51        | (5)         | 589        | (56)         | 0 (0)           | 1,046        | (7.3           |
|                    | W<br>X        | 238<br>218           | (37)<br>(25) | 17<br>3                    | (3)                       | 8<br>209  | (1)<br>(24) | 362<br>443 | (56)<br>(51) | 17 (3)<br>4 (0) | 642<br>877   | (4.5<br>(6.1   |
|                    | X<br>Y        | 151                  | (25)         | 33                         | (0)                       | 209       | (24)        | 443<br>194 | (51)         | 4 (0)<br>0 (0)  | 397          | (6.1           |
| 2006 T             |               | 4,800                | (33.5)       | 798                        | (5.6)                     | 1,150     | (8.0)       | 7,548      | (52.7)       | 31 (0.2)        | 14,327       | (2.0           |
|                    |               | .,                   | ()           |                            |                           | ,         | ()          | ,          | ,,, <i>j</i> |                 | ,==1         |                |
| irand              | Total         | 13,881               | (32.9)       | 2,307                      | (5.5)                     | 3,268     | (7.7)       | 22,650     | (53.6)       | 115 (0.3)       | 42,221       |                |
|                    |               |                      |              |                            |                           |           |             |            |              |                 |              |                |

| Table 1 | 14 Admissions | by source   | of admi        |              | mission ty<br>dmissior |        |               | nned    | - other'     | ) by N  | HS tru       | st, 2004 -   | 2006                         |
|---------|---------------|-------------|----------------|--------------|------------------------|--------|---------------|---------|--------------|---------|--------------|--------------|------------------------------|
| Year    | NHS Trust     | Same ho     | ospital        | A<br>Other h |                        |        | urce<br>linic | Но      | me           | Unkr    | own          | Tot          | al                           |
|         |               | n           | %              | n            | %                      | n      | %             | n       | %            | n       | %            | n            | %                            |
| 2004    | Α             | 135         | (55)           | 110          | (45)                   | 0      | (0)           | 2       | (1)          | 0       | (0)          | 247          | (3.3)                        |
| 2004    | В             | 119         | (82)           | 20           | (14)                   | 0      | (0)           | 7       | (5)          | 0       | (0)          | 146          | (2.0)                        |
|         | C             | 59          | (35)           | 110          | (65)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 169          | (2.3)                        |
|         | D             | 134         | (32)           | 281          | (68)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 415          | (5.6)                        |
|         | E             | 222         | (23)           | 706          | (75)                   | 1      | (0)           | 16      | (2)          | 0       | (0)          | 945          | (12.7)                       |
|         | F             | 84<br>40    | (13)           | 566          | (87)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 650          | (8.7)                        |
|         | G<br>H        | 40<br>75    | (98)<br>(48)   | 1<br>79      | (2)<br>(51)            | 0<br>0 | (0)<br>(0)    | 0       | (0)          | 0       | (0)<br>(0)   | 41<br>155    | (0.5)<br>(2.1)               |
|         | 1             | 207         | (51)           | 202          | (49)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 409          | (5.5)                        |
|         | J             | 42          | (93)           | 3            | (7)                    | 0      | (0)           | 0       | (0)          | 0       | (0)          | 45           | (0.6)                        |
|         | к             | 178         | (45)           | 218          | (55)                   | 0      | (0)           | 1       | (0)          | 0       | (0)          | 397          | (5.3)                        |
|         | L             | 50          | (32)           | 101          | (64)                   | 0      | (0)           | 6       | (4)          | 0       | (0)          | 157          | (2.1)                        |
|         | M             | 140         | (65)           | 69<br>82     | (32)                   | 0      | (0)           | 5       | (2)          | 0       | (0)          | 214<br>171   | (2.9)                        |
|         | 0             | 89<br>40    | (52)<br>(35)   | 72           | (48)                   | 0      | (0)           | 0       | (0)          | 0       | (0)<br>(0)   | 114          | (2.3)<br>(1.5)               |
|         | P             | 241         | (51)           | 232          | (49)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 473          | (6.3)                        |
|         | Q             | 172         | (49)           | 169          | (48)                   | 0      | (0)           | 8       | (2)          | 0       | (0)          | 349          | (4.7)                        |
|         | R             | 110         | (36)           | 192          | (64)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 302          | (4.0)                        |
|         | S             | 92          | (80)           | 21           | (18)                   | 0      | (0)           | 2       | (2)          | 0       | (0)          | 115          | (1.5)                        |
|         | T<br>U        | 84<br>68    | (42)           | 109<br>280   | (55)<br>(80)           | 0      | (0)<br>(0)    | 5<br>0  | (3)<br>(0)   | 0       | (0)<br>(0)   | 198<br>348   | (2.7)<br>(4.7)               |
|         | V             | 264         | (20)           | 280          | (80)                   | 0      | (0)           | 3       | (0)          | 6       | (0)          | 348<br>538   | (4.7)                        |
|         | Ŵ             | 179         | (46)           | 198          | (51)                   | 0      | (0)           | 8       | (2)          | 0       | (0)          | 385          | (5.2)                        |
|         | X             | 243         | (52)           | 214          | (46)                   | 2      | (0)           | 4       | (1)          | 2       | (0)          | 465          | (6.2)                        |
|         | Y             | 6           | (32)           | 13           | (68)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 19           | (0.3)                        |
| 2004 T  | otal          | 3,073       | (41.2)         | 4,313        | (57.8)                 | 4      | (0.1)         | 69      | (0.9)        | 8       | (0.1)        | 7,467        |                              |
| 2005    | Α             | 119         | (49)           | 126          | (51)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 245          | (3.2)                        |
|         | В             | 115         | (91)           | 8            | (6)                    | 0      | (0)           | 4       | (3)          | 0       | (0)          | 127          | (1.7)                        |
|         | C             | 70          | (40)           | 105          | (60)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 175          | (2.3)                        |
|         | D             | 115         | (31)           | 255          | (69)                   | 0<br>0 | (0)           | 0       | (0)          | 0       | (0)          | 370<br>849   | (4.8)                        |
|         | F             | 208<br>105  | (24)<br>(16)   | 634<br>550   | (75) (84)              | 0      | (0)           | 0       | (1)          | 0       | (0)<br>(0)   | 655          | (11.1)<br>(8.6)              |
|         | G             | 41          | (89)           | 5            | (11)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 46           | (0.6)                        |
|         | н             | 75          | (51)           | 73           | (49)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 148          | (1.9)                        |
|         | 1             | 187         | (49)           | 193          | (51)                   | 0      | (0)           | 2       | (1)          | 0       | (0)          | 382          | (5.0)                        |
|         | J             | 48          | (100)          | 0            | (0)                    | 0      | (0)           | 0       | (0)          | 0       | (0)          | 48           | (0.6)                        |
|         | K<br>L        | 169<br>68   | (42)           | 230<br>130   | (58)<br>(63)           | 0      | (0)<br>(0)    | 1       | (0)<br>(4)   | 0       | (0)<br>(0)   | 400<br>206   | (5.2)<br>(2.7)               |
|         | M             | 113         | (55)           | 94           | (45)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 200          | (2.7)                        |
|         | N             | 73          | (52)           | 68           | (48)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 141          | (1.8)                        |
|         | 0             | 64          | (47)           | 65           | (48)                   | 1      | (1)           | 3       | (2)          | 2       | (1)          | 135          | (1.8)                        |
|         | P             | 242         | (49)           | 246          | (50)                   | 0      | (0)           | 2       | (0)          | 0       | (0)          | 490          | (6.4)                        |
|         | Q<br>R        | 198<br>92   | (52)           | 175<br>246   | (46)                   | 0      | (0)           | 10<br>0 | (3)          | 0       | (0)          | 383<br>338   | (5.0)                        |
|         | S             | 105         | (27)<br>(84)   | 19           | (73)<br>(15)           | 0      | (0)<br>(0)    | 1       | (0)          | 0       | (0)<br>(0)   | 125          | (4.4)<br>(1.6)               |
|         | т             | 98          | (46)           | 113          | (53)                   | 0      | (0)           | 2       | (1)          | 0       | (0)          | 213          | (2.8)                        |
|         | U             | 74          | (19)           | 303          | (80)                   | 0      | (0)           | 0       | (0)          | 3       | (1)          | 380          | (5.0)                        |
|         | V             | 280         | (58)           | 196          | (41)                   | 0      | (0)           | 0       | (0)          | 3       | (1)          | 479          | (6.3)                        |
|         | W             | 192         | (47)           | 206          | (51)                   | 0      | (0)           | 8       | (2)          | 0       | (0)          | 406          | (5.3)                        |
|         | X<br>Y        | 250<br>59   | (51)<br>(30)   | 232<br>133   | (47)<br>(68)           | 1<br>0 | (0)<br>(0)    | 1<br>3  | (0)<br>(2)   | 8<br>0  | (2)<br>(0)   | 492<br>195   | (6.4)<br>(2.6)               |
| 2005 T  |               | 3,160       | (41.4)         | 4,405        | (57.7)                 | 2      | (0.0)         | 52      | (0.7)        | 16      | (0.2)        | 7,635        | (2.0)                        |
| 2022    | •             | 404         | /=^>           | 400          | (50)                   |        | (2)           |         | (0)          | •       |              | 000          | <i>(</i> <b>0</b> <i>f</i> ) |
| 2006    | A<br>B        | 131<br>100  | (50)<br>(91)   | 129<br>8     | (50)<br>(7)            | 0<br>0 | (0)<br>(0)    | 0       | (0)<br>(2)   | 0       | (0)<br>(0)   | 260<br>110   | (3.4)<br>(1.5)               |
|         | C             | 92          | (48)           | 98           | (52)                   | 0      | (0)           | 0       | (2)          | 0       | (0)          | 190          | (2.5)                        |
|         | D             | 111         | (31)           | 246          | (69)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 357          | (4.7)                        |
|         | E             | 241         | (26)           | 677          | (73)                   | 0      | (0)           | 11      | (1)          | 0       | (0)          | 929          | (12.3)                       |
|         | F             | 149         | (24)           | 462          | (76)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 611          | (8.1)                        |
|         | G<br>H        | 26<br>77    | (93)           | 2<br>47      | (7)                    | 0      | (0)<br>(0)    | 0       | (0)          | 0       | (0)          | 28<br>124    | (0.4)                        |
|         | n<br>I        | 215         | (62)<br>(56)   | 47<br>167    | (38)                   | 0      | (0)           | 0       | (0)          | 0       | (0)<br>(0)   | 384          | (1.6)<br>(5.1)               |
|         | J             | 34          | (94)           | 2            | (6)                    | 0      | (0)           | 0       | (0)          | 0       | (0)          | 36           | (0.5)                        |
|         | к             | 166         | (44)           | 214          | (56)                   | 0      | (0)           | 1       | (0)          | 0       | (0)          | 381          | (5.0)                        |
|         | L             | 60          | (29)           | 141          | (68)                   | 0      | (0)           | 5       | (2)          | 0       | (0)          | 206          | (2.7)                        |
|         | M<br>N        | 100<br>57   | (46)           | 117<br>64    | (54)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 217<br>121   | (2.9)                        |
|         | 0             | 57          | (47)<br>(43)   | 64<br>63     | (53)<br>(55)           | 0      | (0)           | 0       | (0)          | 0       | (0)<br>(0)   | 121          | (1.6)<br>(1.5)               |
|         | P             | 268         | (49)           | 283          | (51)                   | 0      | (0)           | 1       | (0)          | 0       | (0)          | 552          | (7.3)                        |
|         | Q             | 197         | (58)           | 140          | (41)                   | 0      | (0)           | 2       | (1)          | 0       | (0)          | 339          | (4.5)                        |
|         | R             | 90          | (33)           | 179          | (67)                   | 0      | (0)           | 0       | (0)          | 0       | (0)          | 269          | (3.6)                        |
|         | S             | 100         | (74)           | 26           | (19)                   | 0      | (0)           | 9       | (7)          | 0       | (0)          | 135          | (1.8)                        |
|         | T<br>U        | 130<br>63   | (49)<br>(19)   | 131<br>270   | (50)<br>(81)           | 0      | (0)<br>(0)    | 2       | (1)          | 0       | (0)<br>(0)   | 263<br>333   | (3.5)<br>(4.4)               |
|         | V             | 377         | (64)           | 144          | (24)                   | 0      | (0)           | 1       | (0)          | 67      | (11)         | 589          | (4.4)                        |
|         | w             | 111         | (31)           | 248          | (69)                   | 0      | (0)           | 3       | (1)          | 0       | (0)          | 362          | (4.8)                        |
|         | X             | 193         | (44)           | 240          | (54)                   | 0      | (0)           | 2       | (0)          | 8       | (2)          | 443          | (5.9)                        |
| 2006 T  | Y             | 62<br>3,200 | (32)<br>(42.4) | 132<br>4,230 | (68)<br>(56.0)         | 0<br>2 | (0)<br>(0.0)  | 0<br>41 | (0)<br>(0.5) | 0<br>75 | (0)<br>(1.0) | 194<br>7,548 | (2.6)                        |
| 2000 1  | otui          | 3,200       | (72.4)         | 7,230        | (0.0)                  | 2      | (0.0)         | 41      | (0.0)        | 15      | (1.0)        | 7,340        |                              |
| Grand   | Total         | 9,433       | (41.6)         | 12,948       | (57.2)                 | 8      | (0.0)         | 162     | (0.7)        | 99      | (0.4)        | 22,650       |                              |

| Table 1 | 5 Admissions               | by care area admi   | tted from (a | dmission type 'unplanne   | ed - other'; ad    | Imitted fror    | n hospital)          | by NHS trust, 2004 - 2006<br>Care Area                      |                   |                         |                    |                     |           |                      |                                          |                          | 1              |                                  |
|---------|----------------------------|---------------------|--------------|---------------------------|--------------------|-----------------|----------------------|-------------------------------------------------------------|-------------------|-------------------------|--------------------|---------------------|-----------|----------------------|------------------------------------------|--------------------------|----------------|----------------------------------|
| Year    | NHS Trust                  | Accident & eme<br>n | ergency<br>% | HDU (step-up/step-do<br>n | own unit)<br>%     | ICU / PICL<br>n | / NICU<br>%          | Other intermediate care area (not ICU / PICU / NICU)<br>n % |                   | Recovery only<br>n %    | Theatre and reconn | overy<br>%          | Ward<br>n | X-ray,               | , endoscopy, CT scanner or simila<br>n % | r Unknown<br>n %         | Total<br>n     | ا<br>%                           |
| 2004    | A                          | 69                  | (28)         | 0                         | (0)                | 14              | (6)                  | 4 (                                                         | (2)               | 0 (0)                   | 7                  | (3)                 | 93        | (38)                 | 3                                        | (1) 55 (22               | ) 245          | (3.3                             |
|         | В                          | 69                  | (50)         | 0                         | (0)                | 9               | (6)                  | 1 (                                                         | (1)               | 0 (0)                   | 5                  | (4)                 | 51        | (37)                 | 4                                        | (3) 0 (0                 | ) 139          | (1.9                             |
|         | C<br>D                     | 41<br>131           | (24)         | 44<br>58                  | (26)<br>(14)       | 50              | (30)                 | 3 ()                                                        | (2)<br>(4)        | 2 (1)<br>2 (0)          | 7 44               | (4)                 | 22<br>130 | (13)                 | 0 4                                      | (0) 0 (0<br>(1) 0 (0     |                | (2.3)<br>(5.6)                   |
|         | E                          | 214                 | (32)<br>(23) | 58                        | (14)               | 28<br>325       | (7)                  | 92 (1                                                       | (4)<br>10)        | 2 (0)<br>1 (0)          |                    | (11)<br>(1)         |           | (31)<br>(28)         | 4                                        | (1) 0 (0<br>(2) 2 (0     | 928            | (5.6)                            |
|         | F                          | 0                   | (0)          | 28                        | (4)                | 152             | (23)                 | 2                                                           | (0)               | 0 (0)                   | 25                 | (4)                 |           | (35)                 | 5                                        | (1) 213 (33              | 650            | (12.6)<br>(8.8)                  |
|         | G                          | 21                  | (51)         | 13                        | (32)               | 0               | (0)                  | 0 (                                                         | (0)               | 0 (0)                   | 2                  | (5)                 | 1         | (2)                  | 4                                        | (10) 0 (0                | ) 41           | (0.6)<br>(2.1)                   |
|         | н                          | 56                  | (36)         | 5                         | (3)                | 7               | (5)                  | 13 (                                                        | (8)               | 0 (0)                   | 5                  | (3)                 |           | (43)                 | 2                                        | (1) 0 (0                 | ) 154          | (2.1)                            |
|         |                            | 122<br>29           | (30)         | 4                         | (1)                | 42              | (10)                 |                                                             | (0)<br>(0)        | 4 (1)<br>0 (0)          | 6                  | (1)<br>(4)          |           | (55)<br>(27)         | 5                                        | (1) 0 (0<br>(0) 1 (2     |                | (5.5)                            |
|         | ĸ                          | 70                  | (18)         | 2                         | (2)                | 92              | (23)                 | 32 (                                                        | (8)               | 0 (0)<br>3 (1)          | 27                 | (7)                 | 165       | (42)                 | 5                                        | (1) 0 (0                 | ) 396          | (0.6)<br>(5.4)                   |
|         | L                          | 42                  | (28)         | 26                        | (17)               | 13              | (9)                  |                                                             | (0)               | 0 (0)                   | 1                  | (1)                 |           | (46)                 | 0                                        | (0) 0 (0                 |                | (2.0)<br>(2.8)                   |
|         | M                          | 111<br>50           | (53)<br>(29) | 13                        | (6) (4)            | 5<br>27         | (2)<br>(16)          |                                                             | (0)<br>(1)        | 0 (0) 0 (0)             | 8                  | (4)<br>(5)          | 68<br>76  | (33)<br>(44)         | 3                                        | (1) 0 (0<br>(1) 0 (0     | ) 209<br>) 171 | (2.8)<br>(2.3)                   |
|         | 0                          | 11                  | (10)         | 9                         | (8)                | 32              | (29)                 |                                                             | (8)               | 0 (0)                   |                    | (4)                 |           | (32)                 | 6                                        | (5) 5 (4                 |                | (1.5)<br>(6.4)                   |
|         | Р                          | 150                 | (32)         | 77                        | (16)               | 40              | (8)                  | 24 (                                                        | (5)               | 0 (0)                   | 25                 | (5)                 | 147       | (31)                 | 9                                        | (2) 1 (0                 |                | (6.4)                            |
|         | Q                          | 108<br>65           | (32)         | 17<br>32                  | (5)<br>(11)        | 53<br>79        | (16)                 | 7 (                                                         | (2)               | 4 (1)<br>2 (1)          | 19<br>13           | (6)                 |           | (37)<br>(34)         | 6<br>4                                   | (2) 1 (0<br>(1) 0 (0     | ) 341<br>) 302 | (4.6)<br>(4.1)                   |
|         | R<br>S                     | 28                  | (22)<br>(25) | 32                        | (11)               | 79              | (26)                 | 4 ()                                                        | (1)<br>16)        | 2 (1)<br>0 (0)          |                    | (4)                 |           | (34)                 | 4                                        | (1) 0 (0)                | ) 302          | (4.1) (1.5)                      |
|         | T                          | 49                  | (25)         | 1                         | (1)                | 3               | (2)                  |                                                             | (2)               | 1 (1)                   | 8                  | (4)                 |           | (41)                 | 0                                        | (0) 47 (24               |                | (2.6)<br>(4.7)                   |
|         | U                          | 128                 | (37)         | 15                        | (4)                | 17              | (5)                  |                                                             | (1)               | 0 (0)                   |                    | (4)                 |           | (27)                 | 0                                        | (0) 77 (22               |                | (4.7)                            |
|         | V<br>W                     | 133<br>74           | (25)<br>(20) | 5<br>35                   | (1)<br>(9)         | 116<br>93       | (22)<br>(25)         |                                                             | (0)<br>(0)        | 0 (0)<br>0 (0)          | 39<br>31           | (7)<br>(8)          |           | (44)<br>(30)         | 1                                        | (0) 3 (1<br>(1) 28 (7    |                | (7.2)<br>(5.1)<br>(6.2)          |
|         | x                          | 80                  | (18)         | 6                         | (1)                | 116             | (25)                 | 10 (                                                        | (2)               | 0 (0)                   | 9                  | (2)                 |           | (48)                 | 5                                        | (1) 12 (3                |                | (6.2)                            |
|         | Y                          | 4                   | (21)         | 3                         | (1)<br>(16)        | 4               | (21)                 | 0                                                           | (0)               | 0 (0)                   | 1                  | (5)                 | 7         | (37)                 | 0                                        | (0) 0 (0                 | ) 19           | (0.3)                            |
| 2004 T  |                            | 1,855               | (25.1)       | 411                       | (5.6)              |                 | (17.8)               |                                                             | .4)               | 19 (0.3)                |                    |                     | 2,682 (3  |                      | 85                                       | (1.2) 445 (6.0           |                |                                  |
| 2005    | A                          | 77<br>79            | (31)<br>(64) | 1 0                       | (0)                | 15<br>1         | (6)                  | 2 (                                                         | (1)<br>(0)        | 0 (0)                   | 3 4                | (1)<br>(3)          |           | (25)<br>(31)         | 1                                        | (0) 84 (34<br>(1) 0 (0   |                | (3.2)<br>(1.6)                   |
|         | C                          | 41                  | (23)         | 41                        | (23)               | 44              | (25)                 | 5 (                                                         | (3)               | 4 (2)                   |                    | (7)                 | 23        | (13)                 | 4                                        | (2) 0 (0                 | ) 175          | (2.3)                            |
|         | D                          | 136                 | (37)         | 62                        | (17)               | 24              | (6)                  | 11 (                                                        | (3)               | 1 (0)                   | 14                 | (4)                 |           | (32)                 | 1                                        | (0) 2 (1                 |                | (2.3)<br>(4.9)                   |
|         | E                          | 213                 | (25)         | 18                        | (2)                | 283             | (34)                 |                                                             | (5)               | 1 (0)                   | 4                  | (0)                 |           | (31)                 | 15                                       | (2) 1 (0                 |                | (11.1)                           |
|         | F                          | 10<br>21            | (2)<br>(46)  | 16<br>13                  | (2)<br>(28)        | 108<br>1        | (16)<br>(2)          | 0 ((                                                        | (0)<br>(0)        | 0 (0) 0 (0)             | 27                 | (4)                 | 253<br>1  | (39)<br>(2)          | 6                                        | (1) 235 (36<br>(20) 0 (0 | ) 655<br>) 46  | (8.7)<br>(0.6)                   |
|         | Ĥ                          | 55                  | (37)         | 3                         | (20)               | 6               | (4)                  |                                                             | (8)               | 0 (0)                   |                    | (1)                 |           | (45)                 | 4                                        | (3) 1 (1                 |                | (2.0)                            |
|         | 1                          | 131                 | (34)         | 3                         | (1)                | 50              | (13)                 | 1 (                                                         | (0)               | 0 (0)                   | 4                  | (1)                 | 186       | (49)                 | 5                                        | (1) 0 (0                 |                | (5.0)                            |
|         | J                          | 30<br>77            | (63)<br>(19) | 2                         | (4)<br>(0)<br>(13) | 0<br>98         | (0)<br>(25)          |                                                             | (2)<br>12)        | 0 (0)<br>3 (1)          | 2<br>10            | (4)<br>(3)          |           | (23) (40)            | 4                                        | (4) 0 (0<br>(1) 0 (0     | ) 48<br>) 399  | (0.6)                            |
|         | L                          | 58                  | (19)         | 25                        | (13)               | 15              | (23)                 |                                                             | (0)               | 0 (0)                   | 4                  | (2)                 |           | (40)                 | 0                                        | (0) 0 (0                 | 198            | (5.3)<br>(2.6)                   |
|         | м                          | 73                  | (35)         | 14                        | (7)<br>(16)        | 12              | (6)                  | 3 (                                                         | (1)               | 3 (1)                   | 15                 | (7)                 | 79        | (38)                 | 8                                        | (4) 0 (0                 | ) 207          | (2.7)<br>(1.9)                   |
|         | N<br>O                     | 48<br>15            | (34)         | 23<br>4                   | (16)               | 27<br>33        | (19)                 |                                                             | (1)               | 0 (0)<br>3 (2)          | 7 4                | (5)                 |           | (23)                 | 2 8                                      | (1) 1 (1<br>(6) 12 (9    |                | (1.9)<br>(1.7)                   |
|         | P                          | 178                 | (12)<br>(36) | 79                        | (3)<br>(16)        | 63              | (26)<br>(13)         |                                                             | (2)<br>(1)        | 0 (0)                   |                    | (3)                 |           | (36)<br>(29)         | 8                                        | (1) 0 (0                 | 488            | (6.5)                            |
|         | Q.                         | 111                 | (30)         | 15                        | (4)                | 68              | (18)                 | 8 (                                                         | (2)               | 0 (0)                   | 25                 | (7)                 | 140       | (38)                 | 3                                        | (1) 3 (1                 | ) 373          | (6.5)<br>(4.9)                   |
|         | R                          | 45                  | (13)         | 23                        | (7)                | 94              | (28)                 |                                                             | (1)               | 3 (1)                   |                    | (5)                 |           | (41)                 | 14                                       | (4) 0 (0                 | ) 338          | (4.5)<br>(1.6)<br>(2.8)          |
|         | S<br>T                     | 36<br>69            | (29)         | 0                         | (0)                | 0               | (0) (2)              | 17 (1<br>7 (1                                               | (3)               | 0 (0) 0 (0)             | 6<br>14            | (5)<br>(7)          |           | (52)<br>(43)         | 0                                        | (0) 0 (0<br>(0) 25 (12   |                | (1.6)                            |
|         | Ū.                         | 169                 | (45)         | 12                        | (3)                | 18              | (5)                  |                                                             | (0)               | 1 (0)                   | 17                 | (5)                 |           | (28)                 | 0                                        | (0) 53 (14               | 377            | (5.0)<br>(6.3)<br>(5.3)          |
|         | v                          | 123                 | (26)         | 3                         | (1)                | 65              | (14)                 | 2 (                                                         | (0)               | 0 (0)                   | 63                 | (13)                | 177       | (37)                 | 0                                        | (0) 43 (9                |                | (6.3)                            |
|         | W<br>X                     | 86<br>97            | (22)<br>(20) | 9<br>3                    | (2)<br>(1)         | 71<br>146       | (18)                 |                                                             | 9)<br>(1)         | 2 (1)<br>0 (0)          | 34<br>3            | (9)<br>(1)          |           | (27)<br>(44)         | 0 4                                      | (0) 12 (3<br>(1) 13 (3   |                | (5.3)<br>(6.4)                   |
|         | Ŷ                          | 50                  | (20)         | 36                        | (1)                | 24              | (30)                 | 4 (                                                         | (1)<br>(2)        | 0 (0)                   | 16                 | (1)                 | 56        | (29)                 | 4 2                                      | (1) 13 (3<br>(1) 4 (2    |                | (0.4)                            |
| 2005 T  | otal                       | 2,028               | (26.8)       | 405                       | (5.4)              | 1,271           | (16.8)               | 262 (3.                                                     | .5)               | 21 (0.3)                | 322                | (4.3) 2             | ,667 (3   | 35.3)                | 100                                      | (1.3) 489 (6.5           |                |                                  |
| 2006    | Α                          | 60                  | (23)         | 0                         | (0)                | 19              | (7)                  |                                                             | (1)               | 0 (0)                   |                    | (1)                 |           | (67)                 | 0                                        | (0) 4 (2                 |                | (3.5)                            |
|         | B<br>C                     | 58<br>65            | (54)<br>(34) | 0<br>46                   | (0)<br>(24)        | 1<br>19         | (1)<br>(10)          | 0 ((                                                        | (0)<br>(4)        | 0 (0) 1 (1)             | 0 22               | (0)<br>(12)         |           | (43)<br>(14)         | 2                                        | (2) 1 (1<br>(2) 0 (0     |                | (1.5)<br>(2.6)                   |
|         | D                          | 136                 | (38)         | 49                        | (14)               | 21              | (6)                  | 5 (                                                         | (1)               | 2 (1)                   |                    | (12)                |           | (35)                 | 1                                        | (0) 1 (0                 | 357            | (4.8)                            |
|         | E                          | 213                 | (23)         | 16                        | (2)                | 336             | (37)                 | 63 (                                                        | (7)               | 0 (0)                   | 19                 | (2)                 | 261       | (28)                 | 9                                        | (1) 1 (0                 | ) 918          | (12.4)                           |
|         | F                          | 24<br>20            | (4)<br>(71)  | 15<br>2                   | (2)<br>(7)         | 76              | (12)                 |                                                             | (0)<br>(0)        | 0 (0)                   | 19<br>0            | (3)                 | 286<br>2  | (47)                 | 4                                        | (1) 186 (30<br>(14) 0 (0 |                | (8.2)<br>(0.4)                   |
|         | H                          | 49                  | (40)         | 1                         | (1)                | 0               | (0)<br>(1)           |                                                             | (0)<br>(6)        | 1 (1)                   | 1                  | (1)                 |           | (7)<br>(48)          | 4                                        | (14) 0 (0<br>(2) 1 (1    |                | (1.7)                            |
|         | 1                          | 105                 | (27)         | 2                         | (1)<br>(3)         | 40              | (10)                 | 0 (                                                         | (0)               | 1 (0)                   | 16                 | (4)                 | 213       | (56)                 | 5                                        | (1) 0 (0                 | ) 382          | (5.1)<br>(0.5)                   |
|         | J                          | 19                  | (53)         | 1                         | (3)                | 0               | (0)                  |                                                             | (0)               | 0 (0)                   | 0                  | (0)                 |           | (44)                 | 0                                        |                          |                | (0.5)                            |
|         | r.                         | 53<br>62            | (14)         | 1                         | (0) (8)            | 79<br>17        | (21)                 |                                                             | (9)<br>(0)        | 3 (1)<br>0 (0)          | 30<br>4            | (8)<br>(2)          |           | (47)<br>(51)         | 2                                        | (1) 0 (0<br>(0) 0 (0     | ) 380<br>) 201 | (5.1)                            |
|         | м                          | 98                  | (45)         | 16                        | (7)                | 13              | (6)                  | 4 (                                                         | (2)               | 0 (0)                   | 8                  | (4)                 | 76        | (35)                 | 1                                        | (0) 1 (0                 | ) 217          | (2.7)<br>(2.9)                   |
|         | N                          | 41                  | (34)         | 21                        | (17)               | 23              | (19)                 |                                                             | (1)               | 3 (2)                   | 9                  | (7)                 |           | (18)                 | 1                                        | (1) 0 (0                 | ) 121          | (1.6)                            |
|         | O<br>P                     | 6<br>208            | (5)<br>(38)  | 5                         | (4) (13)           | 10<br>54        | (9)<br>(10)          | 39 (3<br>6 (                                                | 35)<br>(1)        | 1 (1)<br>0 (0)          | 6<br>46            | (5)<br>(8)          |           | (37)<br>(28)         | 4 12                                     | (4) 0 (0<br>(2) 0 (0     | ) 113<br>) 551 | (1.6)<br>(1.5)<br>(7.4)<br>(4.5) |
|         | Q                          | 123                 | (36)         | 10                        | (13)               | 65              | (10)                 |                                                             | (1)<br>(2)        | 0 (0)                   | 23                 | (7)                 | 102       | (30)                 | 5                                        | (2) 0 (0<br>(1) 1 (0     | 337            | (4.5)                            |
|         | R                          | 54                  | (20)         | 24                        | (9)                | 83              | (31)                 | 3 (                                                         | (1)               | 1 (0)                   | 10                 | (4)                 | 89        | (33)                 | 4                                        | (1) 1 (0                 | ) 269          | (3.6)                            |
|         | S                          | 32<br>70            | (25)         | 3                         | (2)<br>(1)         | 2               | (2)                  |                                                             | 23)<br>(1)        | 0 (0)                   | 5                  | (4)                 |           | (41)                 | 3                                        | (2) 0 (0<br>(0) 65 (25   | ) 126<br>) 261 | (1.7)<br>(3.5)                   |
|         |                            |                     | (27)         | 13                        | (1) (4)            | 3<br>15         | (1)                  |                                                             | (1)<br>(0)        | 0 (0)                   | -                  | (3)                 |           | (42)                 | 0                                        | (0) 65 (25               | 333            | (4.5)                            |
|         | U                          | 198                 | (23)         | 4                         | (1)                | 47              | (9)                  | 0 (1                                                        | (0)               | 0 (0)                   | 83                 | (16)                | 252       | (48)                 | 0                                        | (0) 3 (1                 |                | (7.0)<br>(4.8)                   |
|         | U<br>V                     | 198<br>132          | (25)         |                           | (.)                |                 |                      |                                                             |                   |                         |                    |                     |           |                      |                                          |                          |                |                                  |
|         | T<br>U<br>V<br>W           | 132<br>71           | (20)         | 13                        | (1)<br>(4)         | 65              | (18)                 | 79 (2                                                       | 22)               | 0 (0)                   | 52                 | (14)                | 69<br>118 | (19)                 | 0                                        | (0) 10 (3                |                | (4.8)                            |
|         | T<br>U<br>V<br>W<br>X<br>Y | 132                 |              |                           | (4)<br>(4)<br>(20) |                 | (18)<br>(32)<br>(20) | 24 (                                                        | 22)<br>(6)<br>(1) | 0 (0)<br>0 (0)<br>0 (0) | 52<br>6<br>23      | (14)<br>(1)<br>(12) | 118       | (19)<br>(27)<br>(26) | 0<br>3<br>2                              |                          |                | (5.8)                            |
| 2006 T  | X<br>Y                     | 132<br>71<br>79     | (20)<br>(18) | 13<br>17                  | (4)                | 65<br>139       | (32)                 | 24 (                                                        | (6)<br>(1)        | 0 (0)                   | 6                  | (1)<br>(12)         | 118       | (27)<br>(26)         |                                          | (0) 10 (3                | ) 433<br>) 194 | (4.8)<br>(5.8)<br>(2.6)          |

#### Table 15 Admissions by care area admitted from (admission type 'unplanned - other'; admitted from hospital) by NHS trust, 2004 - 2006

Table 16 Admissions by primary diagnostic group and age, 2004 - 2006

|                        |        | •      |        | e Group |       | )      |       |        |        |        |
|------------------------|--------|--------|--------|---------|-------|--------|-------|--------|--------|--------|
| Diagnostic Group       | <1     |        | 1-4    | 4       | 5-    | 10     | 11-   | 15     | Tot    | al     |
|                        | n      | %      | n      | %       | n     | %      | n     | %      | n      | %      |
|                        |        |        |        |         |       |        |       |        |        |        |
| Blood / lymphatic      | 111    | (34)   | 87     | (26)    | 72    | (22)   | 60    | (18)   | 330    | (0.8)  |
| Body wall and cavities | 831    | (90)   | 63     | (7)     | 14    | (2)    | 17    | (2)    | 925    | (2.2)  |
| Cardiovascular         | 7,847  | (61)   | 2,674  | (21)    | 1,270 | (10)   | 971   | (8)    | 12,762 | (30.2) |
| Endocrine / metabolic  | 324    | (35)   | 252    | (27)    | 159   | (17)   | 182   | (20)   | 917    | (2.2)  |
| Gastrointestinal       | 1,790  | (62)   | 538    | (19)    | 281   | (10)   | 263   | (9)    | 2,872  | (6.8)  |
| Infection              | 799    | (39)   | 709    | (35)    | 310   | (15)   | 228   | (11)   | 2,046  | (4.8)  |
| Multisystem            | 72     | (68)   | 18     | (17)    | 11    | (10)   | 5     | (5)    | 106    | (0.3)  |
| Musculoskeletal        | 124    | (8)    | 242    | (16)    | 315   | (21)   | 811   | (54)   | 1,492  | (3.5)  |
| Neurological           | 1,384  | (29)   | 1,702  | (35)    | 976   | (20)   | 762   | (16)   | 4,824  | (11.4) |
| Oncology               | 221    | (14)   | 545    | (35)    | 445   | (28)   | 368   | (23)   | 1,579  | (3.7)  |
| Respiratory            | 5,785  | (55)   | 2,717  | (26)    | 1,256 | (12)   | 840   | (8)    | 10,598 | (25.1) |
| Trauma                 | 111    | (7)    | 442    | (27)    | 481   | (29)   | 613   | (37)   | 1,647  | (3.9)  |
| Other                  | 678    | (37)   | 473    | (26)    | 287   | (16)   | 372   | (21)   | 1,810  | (4.3)  |
| Unknown                | 152    | (49)   | 87     | (28)    | 46    | (15)   | 28    | (9)    | 313    | (0.7)  |
| Total                  | 20,229 | (47.9) | 10,549 | (25.0)  | 5,923 | (14.0) | 5,520 | (13.1) | 42,221 |        |

Figure 16 Admissions by primary diagnostic group, 2004 - 2006

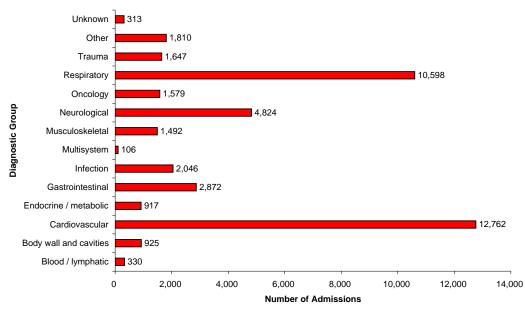
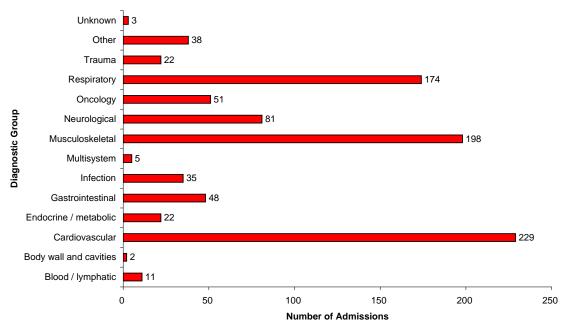




Table 17 Admissions by primary diagnostic group and age (16+), 2004 - 2006

|                        |     |        | Age | Group (` | Year | s)    |   |       |     |        |
|------------------------|-----|--------|-----|----------|------|-------|---|-------|-----|--------|
| Diagnostic Group       |     | 16     | 17  | 7-20     | 2    | 1-25  | 1 | 26+   | Т   | otal   |
|                        | n   | %      | n   | %        | n    | %     | n | %     | n   | %      |
|                        |     |        |     |          |      |       |   |       |     |        |
| Blood / lymphatic      | 7   | (64)   | 4   | (36)     | 0    | (0)   | 0 | (0)   | 11  | (1.2)  |
| Body wall and cavities | 1   | (50)   | 1   | (50)     | 0    | (0)   | 0 | (0)   | 2   | (0.2)  |
| Cardiovascular         | 134 | (59)   | 86  | (38)     | 7    | (3)   | 2 | (1)   | 229 | (24.9) |
| Endocrine / metabolic  | 18  | (82)   | 4   | (18)     | 0    | (0)   | 0 | (0)   | 22  | (2.4)  |
| Gastrointestinal       | 29  | (60)   | 19  | (40)     | 0    | (0)   | 0 | (0)   | 48  | (5.2)  |
| Infection              | 21  | (60)   | 14  | (40)     | 0    | (0)   | 0 | (0)   | 35  | (3.8)  |
| Multisystem            | 2   | (40)   | 3   | (60)     | 0    | (0)   | 0 | (0)   | 5   | (0.5)  |
| Musculoskeletal        | 124 | (63)   | 73  | (37)     | 1    | (1)   | 0 | (0)   | 198 | (21.5) |
| Neurological           | 53  | (65)   | 24  | (30)     | 4    | (5)   | 0 | (0)   | 81  | (8.8)  |
| Oncology               | 35  | (69)   | 16  | (31)     | 0    | (0)   | 0 | (0)   | 51  | (5.5)  |
| Respiratory            | 96  | (55)   | 74  | (43)     | 2    | (1)   | 2 | (1)   | 174 | (18.9) |
| Trauma                 | 14  | (64)   | 7   | (32)     | 0    | (0)   | 1 | (5)   | 22  | (2.4)  |
| Other                  | 19  | (50)   | 17  | (45)     | 1    | (3)   | 1 | (3)   | 38  | (4.1)  |
| Unknown                | 2   | (67)   | 1   | (33)     | 0    | (0)   | 0 | (0)   | 3   | (0.3)  |
| Total                  | 555 | (60.4) | 343 | (37.3)   | 15   | (1.6) | 6 | (0.7) | 919 |        |

Figure 17 Admissions by primary diagnostic group (16+), 2004 - 2006



| Table 18 Admissions I | ov primary | diagnostic group | by NHS trust | 2004 - 2006 |
|-----------------------|------------|------------------|--------------|-------------|
|                       |            |                  |              |             |

| Table 1 | 8 Admissions | by primary dia    | ignostic g  | group by NHS trus    | st, 2004 - 2 | 006            |              |                              |            |                  |              | Diagnostic G      | roup         |            |                  |             |                   |              |                  |              |              |                  |                 |                   | 1                                               |
|---------|--------------|-------------------|-------------|----------------------|--------------|----------------|--------------|------------------------------|------------|------------------|--------------|-------------------|--------------|------------|------------------|-------------|-------------------|--------------|------------------|--------------|--------------|------------------|-----------------|-------------------|-------------------------------------------------|
| Year    | NHS Trust    | Blood / lymp<br>n | ohatic<br>% | Body wall and c<br>n | avities<br>% | Cardiova:<br>n | scular<br>%  | Endocrine / metabolic<br>n % |            | Gastrointe:<br>n | stinal<br>%  | Infection<br>n %  | Multisy<br>n | stem<br>%  | Musculoskel<br>n | etal<br>%   | Neurologic<br>n % |              | icology<br>%     | Respira<br>n | tory<br>%    | Trauma<br>n %    | Other<br>n %    | Unknow<br>n %     | n Total                                         |
| 2004    | A            | 7                 | (2)         | 11                   | (2)<br>(8)   | 15             | (3)<br>(3)   | 14 (                         | (3)        | 52               | (12)         | 26 (6)            | 2            | (0)        | 16<br>3          | (4)         | 94 (              | 21) 6        | 67 (15)          | 68           | (15)         | 30 (7)           | 39 (9           | 9) 2              | 0) 443 (3.3                                     |
|         | B<br>C       | 2                 | (1)         | 23<br>9              |              | 9              |              |                              | (3)        | 68               | (24)         | 11 (4)            | 0            | (0)        | 3<br>35          | (1)         |                   |              | 2 (1)<br>6 (2)   | 85<br>86     | (30)         | 10 (4)<br>21 (8) | 21 (7           |                   | 0) 285 (2.<br>0) 264 (1.                        |
|         | D            | 5                 | (1)         | 8                    | (3)<br>(1)   | 25             | (3)<br>(4)   |                              | (1)<br>(3) | 16<br>31         | (6)<br>(5)   | 18 (7)<br>46 (8)  | 2            | (0)        | 16               | (13)        |                   |              | 6 (2)<br>24 (4)  | 245          | (33)<br>(42) | 21 (8)<br>50 (9) |                 |                   | 0) 264 (1.<br>0) 584 (4.                        |
|         | E            | 9                 | (1)         | 33<br>10             | (2)          | 686            | (39)         |                              | (2)        | 126              | (7)          | 47 (3)            | 3            | (0)        | 45               | (3)         |                   |              | 51 (3)           | 472          | (27)         | 56 (3)           | 65 (4           |                   | 0) 1,778 (12.<br>1) 1,165 (8.                   |
|         | G            | 0                 | (0)<br>(0)  | 0                    | (1)<br>(0)   | 539<br>2       | (46)<br>(5)  |                              | (1)<br>(5) | 12<br>3          | (1)<br>(7)   | 60 (5)<br>9 (20)  | 0            | (0)<br>(0) | 32<br>0          | (3)         |                   |              | 3 (0)<br>0 (0)   | 304<br>9     | (26)         | 18 (2)<br>1 (2)  | 37 (3<br>5 (11  |                   | <ol> <li>1,165 (8.4</li> <li>44 (0.3</li> </ol> |
|         | н            | 7                 | (2)         | 5                    | (2)          | 14             | (5)          | 12 (                         | (4)        | 62               | (20)         | 3 (1)             | 0            | (0)        | 2                | (1)         | 57 (              | 19) 1        | 10 (3)           | 43           | (14)         | 41 (13)          | 52 (17          |                   | 0) 308 (2.                                      |
|         | J            | 4                 | (0)<br>(2)  | 3                    | (0)<br>(4)   | 281<br>2       | (33)<br>(2)  |                              | (2)<br>(6) | 50<br>22         | (6)<br>(27)  | 33 (4)<br>2 (2)   | 0            | (0)<br>(0) | 22<br>0          | (3)<br>(0)  |                   |              | 14 (5)<br>0 (0)  | 218<br>21    | (25)<br>(26) | 42 (5)<br>0 (0)  | 70 (8<br>9 (11  | 3) 5<br>1) 0      | 1) 859 (6.<br>0) 82 (0.                         |
|         | к            | 4                 | (0)         | 52                   | (6)          | 264            | (30)         | 8 (                          | (1)        | 77               | (9)          | 43 (5)            | 1            | (0)        | 21               | (2)         | 68                | (8) 4        | 12 (5)           | 216          | (24)         | 43 (5)           | 44 (5           | 5) 0              | 0) 883 (6.4                                     |
|         | M            | 1                 | (0)         | 0                    | (0)          | 14<br>13       | (6)<br>(3)   |                              | (2)<br>(3) | 7<br>29          | (3)<br>(8)   | 6 (3)<br>25 (7)   | 0            | (0)        | 19<br>38         | (8)         |                   |              | 1 (0)<br>24 (6)  | 119<br>135   | (53)<br>(36) | 2 (1)<br>24 (6)  |                 | 6) 2<br>4) 0      | 1) 226 (1.<br>0) 373 (2.                        |
|         | N            | 0                 | (0)         | 9                    | (3)          | 90             | (27)         | 5 (                          | (1)        | 15               | (4)          | 7 (2)             | 1            | (0)        | 24               | (7)         | 39 (              | 12) 1        | 18 (5)           | 113          | (34)         | 12 (4)           | 4 (1            | 1) 0              | 0) 337 (2.                                      |
|         | O<br>P       | 0                 | (0)<br>(0)  | 2<br>40              | (0)<br>(4)   | 480<br>359     | (87)<br>(37) |                              | (0)        | 5<br>58          | (1)          | 4 (1)<br>35 (4)   | 0            | (0)<br>(0) | 9<br>58          | (2)<br>(6)  |                   | (0)<br>(8) 4 | 2 (0)<br>12 (4)  | 42<br>242    | (8)<br>(25)  | 1 (0)<br>33 (3)  | 3 (1            |                   | 1) 553 (4.<br>0) 982 (7.                        |
|         | Q            | 4                 | (1)         | 22                   | (4)          | 14             | (3)          | 7 (                          | (1)        | 56               | (10)         | 37 (7)            | 0            | (0)        | 32               | (6)         | 68 (              | 12) 3        | 31 (6)           | 227          | (41)         | 26 (5)           | 21 (4           | 4) 2              | 0) 547 (4.                                      |
|         | R            | 2                 | (0)         | 8                    | (1)          | 188            | (32)         |                              | (1)<br>(5) | 53<br>1          | (9)          | 27 (5)<br>5 (3)   | 0            | (0)        | 23<br>22         | (4)         |                   |              | 23 (4)<br>0 (0)  | 133<br>79    | (23)<br>(47) | 21 (4)<br>11 (7) |                 | 3) 0<br>4) 0      | 0) 585 (4.1<br>0) 167 (1.1                      |
|         | T            | 10                | (3)         | 4                    | (1)          | 11             | (3)          | 3 (                          | (1)        | 44               | (12)         | 26 (7)            | 1            | (0)        | 3                | (1)         | 42 (              | 11) 6        | 6 (18)           | 120          | (33)         | 23 (6)           | 13 (4           | 4) 0              | 0) 366 (2.                                      |
|         | U            | 9                 | (2)<br>(1)  | 2<br>26              | (1)<br>(3)   | 7 403          | (2)<br>(41)  |                              | (5)<br>(3) | 10<br>92         | (3)<br>(9)   | 45 (11)<br>30 (3) | 0            | (0)<br>(0) | 0                | (0)<br>(2)  | 90 (<br>82        |              | 1 (0)<br>11 (1)  | 171<br>195   | (44)<br>(20) | 4 (1)<br>56 (6)  |                 | 4) 18<br>2) 13    | 5) 392 (2.1<br>1) 983 (7.1                      |
|         | ŵ            | 2                 | (0)         | 9                    | (1)          | 254            | (39)         | 11 (                         | (2)        | 21               | (3)          | 21 (3)            | 0            | (0)        | 4                | (1)         | 100 (             | 15) 1        | 17 (3)           | 182          | (28)         | 2 (0)            | 25 (4           | 4) 0              | 0) 648 (4.                                      |
|         | X            | 7                 | (1)         | 12                   | (1)          | 506<br>0       | (52)         |                              | (1)        | 48<br>0          | (5)          | 41 (4)<br>4 (20)  | 3            | (0)        | 10               | (1)         | 79<br>3 (         | (8) 2<br>15) | 24 (2)<br>1 (5)  | 176<br>11    | (18)         | 18 (2)<br>0 (0)  | 29 (3           |                   | 0) 964 (7.0<br>0) 20 (0.1                       |
| 2004 To | otal         | 88                | (0.6)       | 295                  | (2.1)        |                | (30.3)       |                              | .9)        | 958              | (6.9)        | 611 (4.4)         | 18           | (0.1)      | 452              | (3.3)       |                   |              | 10 (3.7)         | 3,712        |              | 545 (3.9)        | 596 (4.3        |                   | 4) 13,838                                       |
| 2005    | Α            | 8                 | (2)         | 8                    | (2)          | 9              | (2)          | 12 (                         | (3)        | 39               | (9)          | 15 (4)            | 2            | (0)        | 17               | (4)         |                   |              | 60 (14)          | 95           | (23)         | 28 (7)           | 38 (9           | 9) 1              | 0) 420 (3.                                      |
|         | B            | 0                 | (0)         | 16<br>2              | (7)          | 5<br>10        | (2)<br>(4)   |                              | (3)        | 48<br>10         | (21)         | 20 (9)<br>33 (12) | 0            | (0)        | 3<br>33          | (1)<br>(12) | 33 (<br>32 (      |              | 3 (1)<br>9 (3)   | 83<br>98     | (36)<br>(36) | 6 (3)<br>20 (7)  | 10 (4           |                   | 0) 233 (1.<br>0) 271 (1.                        |
|         | D            | 7                 | (1)         | 3                    | (1)          | 37             | (6)          | 11 (                         | (2)        | 27               | (5)          | 52 (9)            | 1            | (0)        | 28               | (5)         | 119 (             | 21) 3        | 36 (6)           | 186          | (32)         | 45 (8)           | 28 (5           | 5) 0              | 0) 580 (4.                                      |
|         | E            | 12                | (1)         | 42                   | (3)          | 549            | (36)         |                              | (2)        | 96               | (6)          | 55 (4)            | 3            | (0)        | 30               | (2)         |                   |              | 12 (3)           | 370          | (24)         | 64 (4)           |                 |                   | 0) 1,515 (10.                                   |
|         | G            | 4                 | (0)<br>(0)  | 12                   | (1)<br>(0)   | 531<br>2       | (47)<br>(4)  |                              | (2)<br>(0) | 12<br>2          | (1)<br>(4)   | 46 (4)<br>8 (16)  | 0            | (0)<br>(0) | 27<br>0          | (2)<br>(0)  | 127 (<br>24 (     |              | 1 (0)<br>1 (2)   | 276<br>6     | (25)<br>(12) | 18 (2)<br>6 (12) | 43 (4           |                   | 1) 1,123 (8.0<br>0) 50 (0.4                     |
|         | н            | 9                 | (3)         | 5                    | (1)          | 2              | (1)          |                              | (4)        | 75               | (22)         | 13 (4)            | 0            | (0)        | 1                | (0)         | 65 (              | 19) 1        | 12 (4)           | 52           | (15)         | 23 (7)           | 66 (20          |                   | 0) 337 (2.4                                     |
|         | J            | 8                 | (1)<br>(2)  | 5<br>7               | (1)<br>(7)   | 343<br>2       | (40)         |                              | (3)<br>(1) | 42<br>22         | (5)          | 52 (6)<br>2 (2)   | 1            | (0)        | 16<br>0          | (2)<br>(0)  | 68<br>18 (        | (8) 3<br>19) | 31 (4)<br>1 (1)  | 180<br>28    | (21)<br>(29) | 33 (4)<br>1 (1)  | 49 (6           | 6) 3<br>9) 3      | 0) 853 (6.<br>3) 96 (0.                         |
|         | ĸ            | 11                | (1)         | 41<br>4              | (5)          | 280            | (32)         |                              | (2)        | 103              | (12)         | 47 (5)            | 2            | (0)        | 19               | (2)         | 90 (              | 10) 5        | 54 (6)           | 156          | (18)         | 20 (2)           | 46 (5           | 5) 0              | 0) 884 (6.                                      |
|         | M            | 3                 | (1)         | 4                    | (1)          | 5<br>10        | (2)<br>(3)   |                              | (3)<br>(3) | 5<br>24          | (2)<br>(7)   | 16 (6)<br>41 (12) | 0            | (0)<br>(0) | 25<br>34         | (9)<br>(10) |                   |              | 0 (0)<br>26 (7)  | 133<br>116   | (49)<br>(33) | 8 (3)<br>17 (5)  | 16 (5           | 5) U              | 0) 274 (1.<br>0) 355 (2.                        |
|         | N            | 0                 | (0)         | 9                    | (3)          | 109            | (37)         |                              | (3)        | 10               | (3)          | 11 (4)            | 6            | (2)        | 13               | (4)         | 39 (              | 13)          | 9 (3)            | 54           | (18)         | 19 (6)           | 7 (2            | 2) 0              | 0) 295 (2.                                      |
|         | O<br>P       | 0                 | (0)         | 3<br>46              | (0)<br>(5)   | 516<br>416     | (84)<br>(41) |                              | (0)<br>(1) | 7<br>35          | (1)<br>(3)   | 6 (1)<br>54 (5)   | 0            | (0)        | 3<br>44          | (0) (4)     |                   |              | 3 (0)<br>41 (4)  | 53<br>193    | (9)<br>(19)  | 0 (0) 45 (4)     | 6 (1<br>27 (3   |                   | 2) 615 (4.4<br>0) 1,017 (7.3                    |
|         | Q            | 5                 | (1)         | 32                   | (6)          | 9              | (2)          | 22 (                         | (4)        | 55               | (9)          | 42 (7)            | 0            | (0)        | 41               | (7)         | 92 (              | 16) 4        | 12 (7)           | 192          | (33)         | 28 (5)           | 20 (3           | 3) 1              | 0) 581 (4.                                      |
|         | к<br>S       | 2                 | (0)<br>(0)  | 15<br>0              | (2)<br>(0)   | 209<br>5       | (31)<br>(3)  |                              | (1)<br>(7) | 62<br>2          | (9)<br>(1)   | 31 (5)<br>6 (3)   | 1            | (0)<br>(0) | 44<br>18         | (7)<br>(10) |                   |              | 19 (3)<br>0 (0)  | 150<br>95    | (23)<br>(53) | 25 (4)<br>11 (6) | 22 (3           | 3) U<br>4) 1      | 0) 665 (4.<br>1) 180 (1.                        |
|         | T<br>U       | 11                | (3)         | 7                    | (2)          | 9              | (2)          | 7 (                          | (2)        | 42               | (10)         | 14 (3)            | 3            | (1)        | 9                | (2)         | 66 (              | 16) 6        | 69 (17)          | 149          | (36)         | 19 (5)           | 8 (2            | 2) 0              | 0) 413 (2.                                      |
|         | U<br>V       | 13<br>3           | (3)         | 0 22                 | (0) (2)      | 13<br>304      | (3)<br>(33)  |                              | (3)        | 13<br>91         | (3)<br>(10)  | 45 (11)<br>10 (1) | 0            | (0)        | 0                | (0)         |                   |              | 0 (0)<br>12 (1)  | 198<br>133   | (49)<br>(15) | 3 (1)<br>63 (7)  | 18 (4<br>27 (3  | 4) 8<br>3) 146 (1 | 6) 908 (6.                                      |
|         | W            | 3                 | (0)         | 4                    | (1)          | 298            | (43)         | 12 (                         | (2)        | 22               | (3)          | 36 (5)            | 0            | (0)        | 10               | (1)         | 89 (              | 13) 1        | 17 (2)           | 179          | (26)         | 5 (1)            | 22 (3           | 3) 4              | 1) 701 (5.                                      |
|         | X<br>Y       | 6                 | (1)         | 17<br>13             | (2)<br>(3)   | 412<br>20      | (46)<br>(5)  |                              | (1)        | 49<br>27         | (5)<br>(7)   | 42 (5)<br>26 (7)  | 5            | (1)        | 6<br>62          | (1)         |                   |              | 24 (3)<br>20 (5) | 200<br>90    | (22)<br>(23) | 26 (3)<br>28 (7) | 26 (3<br>28 (7  |                   | 0) 891 (6.<br>0) 391 (2.                        |
| 2005 To | otal         | 117               | (0.8)       | 315                  | (2.2)        | 4,105          | (29.2)       | 301 (2.                      | .1)        | 920              | (6.5)        | 723 (5.1)         | 40           | (0.3)      | 492              | (3.5)       | 1,687 (12         | 2.0) 53      | 32 (3.8)         | 3,465        | (24.7)       | 561 (4.0)        | 605 (4.3        | 3) 193 (1         |                                                 |
| 2006    | A            | 7                 | (2)         | 6                    | (1)          | 16             | (4)          |                              | (3)        | 40               | (9)          | 22 (5)            | 16           | (4)        | 23               | (5)         | 80 (              |              | 32 (18)<br>2 (1) | 95           | (21)         | 23 (5)           | 26 (6           | 6) 0              | 0) 449 (3.                                      |
|         | B<br>C       | 2                 | (1)<br>(0)  | 2                    | (2)<br>(1)   | 7<br>13        | (3)<br>(4)   |                              | (4)<br>(3) | 38<br>8          | (17)<br>(3)  | 13 (6)<br>34 (11) | 2            | (1)        | 2<br>40          | (1)<br>(13) |                   |              | 2 (1)<br>15 (5)  | 69<br>97     | (31)<br>(32) | 8 (4)<br>22 (7)  | 30 (13<br>20 (7 |                   | 4) 226 (1.<br>0) 301 (2.                        |
|         | D            | 16                | (3)         | 6                    | (1)          | 43             | (8)          | 21 (                         | (4)        | 48               | (8)          | 40 (7)            | 4            | (1)        | 34               | (6)         | 78 (              | 14) 3        | 30 (5)           | 180          | (32)         | 47 (8)           | 24 (4           | 4) 0              | 0) 571 (4.                                      |
|         | F            | 13<br>3           | (1)<br>(0)  | 53<br>4              | (3)<br>(0)   | 629<br>501     | (39)<br>(46) |                              | (3)<br>(2) | 112<br>18        | (7)<br>(2)   | 56 (4)<br>55 (5)  | 5            | (0)<br>(0) | 29<br>39         | (2)<br>(4)  | 122<br>97         | (8) 3<br>(9) | 39 (2)<br>2 (0)  | 366<br>290   | (23)<br>(27) | 51 (3)<br>14 (1) | 35 (3           | 4) U<br>3) 6      | 0) 1,600 (11.<br>1) 1,086 (7.                   |
|         | G            | 0                 | (0)         | 0                    | (0)          | 2              | (6)          | 0 (                          | (0)        | 0                | (0)          | 5 (14)            | 0            | (0)        | 0                | (0)         | 15 (              | 42)          | 2 (6)            | 5            | (14)         | 5 (14)           | 2 (6            | 6) 0              | 0) 36 (0.3                                      |
| 1       | n<br>I       | 9                 | (3)         | 8                    | (3)          | 6<br>330       | (2)<br>(36)  |                              | (3)<br>(5) | 56<br>54         | (18)<br>(6)  | 17 (5)<br>44 (5)  | 0            | (0)        | 2 27             | (1)<br>(3)  |                   |              | 13 (4)<br>19 (5) | 53<br>178    | (17) (20)    | 27 (9)<br>34 (4) | 67 (21<br>52 (6 |                   | 0) 315 (2.<br>1) 909 (6.                        |
|         | J            | 2                 | (3)         | 7                    | (10)         | 2              | (3)          | 1 (                          | (1)        | 22               | (30)         | 3 (4)             | 0            | (0)        | 0                | (0)         | 5                 | (7)          | 3 (4)            | 22           | (30)         | 2 (3)            | 4 (5            | 5) 0              | 0) 73 (0.                                       |
|         | L            | 8                 | (1)         | 49<br>3              | (5)<br>(1)   | 306<br>8       | (34)<br>(3)  |                              | (2)<br>(5) | 110<br>8         | (12)         | 51 (6)<br>18 (6)  | 3            | (0)<br>(0) | 16<br>34         | (2)         |                   |              | 50 (6)<br>1 (0)  | 149<br>132   | (16)<br>(44) | 24 (3)<br>6 (2)  | 38 (4<br>18 (6  |                   | 0) 907 (6.<br>0) 299 (2.                        |
| 1       | м            | 2                 | (0)         | 9                    | (2)          | 12             | (3)          | 22 (                         | (5)        | 31               | (8)          | 22 (5)            | 1            | (0)        | 42               | (10)        | 65 (              | 16) 4        | 11 (10)          | 112          | (28)         | 25 (6)           | 21 (5           | 5) 0              | 0) 405 (2.                                      |
|         | N<br>O       | 2                 | (1)         | 9                    | (3)          | 114<br>536     | (41)<br>(82) |                              | (1)<br>(0) | 8                | (3)          | 10 (4)<br>9 (1)   | 1            | (0)<br>(0) | 14<br>8          | (5)<br>(1)  |                   |              | 5 (2)<br>9 (1)   | 49<br>47     | (18)<br>(7)  | 14 (5)<br>0 (0)  | 4 (1<br>2 (0    | ., .              | 0) 275 (1.3<br>3) 655 (4.4                      |
|         | Ρ            | 6                 | (1)         | 50                   | (5)          | 476            | (43)         | 15 (                         | (1)        | 37               | (3)          | 53 (5)            | 5            | (0)        | 29               | (3)         | 114 (             | 10) 1        | 18 (2)           | 220          | (20)         | 48 (4)           | 31 (3           | 3) 0              | 0) 1.102 (7.                                    |
| 1       | Q<br>R       | 7                 | (1)<br>(0)  | 25<br>11             | (5)          | 11<br>235      | (2)<br>(36)  |                              | (3)<br>(2) | 62<br>75         | (12)<br>(11) | 22 (4)<br>24 (4)  | 4            | (0)<br>(1) | 37<br>44         | (7)<br>(7)  |                   |              | 28 (6)<br>13 (2) | 164<br>126   | (33)<br>(19) | 23 (5)<br>16 (2) | 24 (5           |                   | 0) 503 (3.<br>0) 656 (4.                        |
|         | S            | 1                 | (1)         | 0                    | (0)          | 6              | (3)          | 9 (                          | (5)        | 0                | (0)          | 8 (4)             | 0            | (0)        | 16               | (9)         | 24 (              | 13)          | 0 (0)            | 90           | (48)         | 17 (9)           | 16 (9           | 9) 1              | 1) 188 (1.                                      |
| 1       | T<br>U       | 2                 | (0) (2)     | 2                    | (0)          | 9<br>24        | (2)<br>(7)   |                              | (2)<br>(3) | 52<br>12         | (12)         | 28 (6)<br>35 (10) | 0            | (0)        | 6<br>0           | (1)         |                   | 14) 7<br>28) | 70 (16)<br>1 (0) | 163<br>156   | (37)         | 16 (4)<br>2 (1)  | 19 (4           | 4) 1<br>2) 7      | 0) 442 (3.<br>2) 367 (2.                        |
| 1       | v            | 10                | (1)         | 19                   | (2)          | 438            | (42)         | 26                           | (2)        | 97               | (9)          | 32 (3)            | 0            | (0)        | 13               | (1)         | 76                | (7)          | 5 (0)            | 254          | (24)         | 56 (5)           | 16 (2           | 2) 4              | 0) 1,046 (7.                                    |
| 1       | W            | 5                 | (1)         | 6<br>22              | (1)<br>(3)   | 294<br>440     | (46)<br>(50) |                              | (2)        | 20<br>45         | (3)<br>(5)   | 39 (6)<br>42 (5)  | 0            | (0)<br>(0) | 4                | (1)         |                   |              | 19 (3)<br>23 (3) | 114<br>175   | (18)<br>(20) | 12 (2)<br>25 (3) | 16 (2<br>18 (2  |                   | 0) 642 (4.<br>0) 877 (6.                        |
|         | Y            | 0                 | (0)         | 6                    | (2)          | 13             | (3)          | 3 (                          | (1)        | 23               | (6)          | 30 (8)            | 0            | (0)        | 82               | (21)        | 59 (              | 15) 1        | 17 (4)           | 115          | (29)         | 24 (6)           | 25 (6           | 6) 0              | 0) 397 (2.                                      |
| 2006 To | otal         | 125               | (0.9)       | 315                  | (2.2)        | 4,471          | (31.2)       | 359 (2.                      | .5)        | 994              | (6.9)        | 712 (5.0)         | 48           | (0.3)      | 548              | (3.8)       | 1,581 (11         | .0) 53       | 37 (3.7)         | 3,421        | (23.9)       | 541 (3.8)        | 609 (4.3        | 3) 66 (0          | 5) 14,327                                       |
| Grand 1 | Total        | 330               | (0.8)       | 925                  | (2.2)        | 12,762         | (30.2)       | 917 (2.                      | .2)        | 2,872            | (6.8)        | 2,046 (4.8)       | 106          | (0.3)      | 1,492            | (3.5)       | 4,824 (11         | .4) 1,57     | 79 (3.7)         | 10,598       | (25.1)       | 1,647 (3.9)      | 1,810 (4.3      | 3) 313 (0         | 7) 42,221                                       |

| Tuble To Adding                                                                                                                                                   | 1155101151 | by primary dia                                                                                                                                                                                                                                                                                                                                                                                                        | gnostic gr                                                                                                                                                                                                                                                                                                                                                                                                  | roup (planned - fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ollowing s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | urgery) by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NHS trus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t, 2004 - 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Diagnost                                                                                                                                                                                                                                | tic Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | up                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year NHS 1                                                                                                                                                        | Trust      | Blood / lymp<br>n                                                                                                                                                                                                                                                                                                                                                                                                     | hatic<br>%                                                                                                                                                                                                                                                                                                                                                                                                  | Body wall and ca<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | avities<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cardiova<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | scular<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Endocrine / metabolic<br>n %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gastro<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ointestinal<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Infecti                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | up<br>Multisyste<br>n %                                                                                                                                                                                                                                                                                                                                                                                                                       | em M<br>%                                                                                                                                             | Musculoskeletal<br>n %                                                                                                                                                                                                                                                                                                                                                                                                                    | Neu<br>n                                                                                                                                                                                                                                                                                                                                                            | rological<br>%                                       | Oncology<br>n %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Respirato                                                                                                                                                           | ory<br>%                                                                                                                                                                                                                                                                                                                                      | Trauma<br>n %                                                                                                                                           | Other<br>n %                                                                                                                                                                 | Unknown<br>n %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total<br>n %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2004 A<br>B<br>C<br>F<br>G<br>H<br>J<br>J<br>K<br>L<br>J<br>K<br>L<br>U<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V |            | n 2 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (2)           (1)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (0)           (1)           (0)           (0) | n<br>4<br>13<br>3<br>4<br>2<br>1<br>0<br>1<br>2<br>3<br>14<br>0<br>3<br>14<br>0<br>3<br>2<br>13<br>8<br>3<br>0<br>3<br>13<br>8<br>3<br>0<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>1<br>1<br>3<br>3<br>3<br>3<br>1<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 30           (16)           (4)           (6)           (0)           (0)           (11)           (10)           (11)           (10)           (2)           (11)           (3)           (5)           (2)           (11)           (33)           (5)           (2)           (12)           (3)           (2)           (2)           (1)           (1)           (1)           (2)           (1)           (1)           (2)           (2)           (1)           (1)           (1)           (1) | n<br>4<br>0<br>1<br>2<br>338<br>308<br>0<br>4<br>225<br>5<br>0<br>152<br>4<br>0<br>152<br>4<br>0<br>152<br>4<br>0<br>152<br>4<br>0<br>152<br>4<br>0<br>1<br>225<br>5<br>4<br>0<br>0<br>1<br>225<br>10<br>1<br>225<br>10<br>1<br>225<br>10<br>10<br>225<br>10<br>10<br>225<br>10<br>10<br>10<br>225<br>10<br>10<br>10<br>10<br>225<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %           (3)           (0)           (1)           (3)           (64)           (79)           (0)           (55)           (50)           (50)           (51)           (62)           (53)           (1)           (65)           (65)           (0)           (22)           (0)           (82)           (79)           (655)           (0)           (655)           (0)           (655)           (0)           (655)           (0)           (655)           (0)           (655)           (0)           (655)           (0)           (655)           (0)           (655)           (0)           (655)           (0)           (655)           (0)           (655) | 4         C           0         0           1         C           2         0           0         0           0         0           1         C           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           1         0           0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D)         8           2)         6           2)         6           2)         6           2)         6           2)         6           3)         6           3)         6           4)         1           5)         12           5)         24           6)         10           6)         10           7)         11           10)         11           10)         11           10)         11           10)         24           10)         24           10)         25           10)         25           11)         25           11)         25 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>0<br>1<br>4<br>0<br>1<br>5<br>7<br>0<br>1<br>5<br>0<br>0<br>2<br>2<br>1<br>3<br>0<br>0<br>2<br>2<br>1<br>3<br>0<br>0<br>2<br>2<br>1<br>3<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | (1)<br>(0)<br>(1)<br>(2)<br>(1)<br>(0)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(2)<br>(0)<br>(1)<br>(1)<br>(2)<br>(0)<br>(1)<br>(1)<br>(2)<br>(3)<br>(3)<br>(3)<br>(0)<br>(0)<br>(4)<br>(0)                                                                                                                                                                                                                                                                                                                                                              | n         2           2         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0 | 22<br>(0)<br>(0)<br>(3)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                      | 0)         2           2)         9)           2)         77           7)         0)           1)         55           0)         4)         2           2)         77           7)         8)           2)         3)           0)         1           8)         1           2)         2           3)         0)           3)         0)           3)         0) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | n         -%           37         (28)           0         (0)           4         (6)           13         (200)           20         (4)           0         (0)           0         (0)           20         (4)           0         (0)           0         (0)           33         (11)           16         (12)           1         (0)           26         (6)           27         (18)           11         (6)           0         (0)           30         (11)           10         (5)           13         (5)           0         (0)           30         (11)           13         (5)           0         (0)                                                                              | 12<br>13<br>13<br>35<br>0<br>6<br>22<br>4<br>20<br>9<br>14<br>8<br>22<br>4<br>20<br>9<br>14<br>8<br>22<br>34<br>32<br>34<br>9<br>6<br>6<br>26<br>14<br>13<br>9<br>0 | %           (7)           (15)           (12)           (9)           (0)           (8)           (6)           (14)           (7)           (25)           (13)           (6)           (3)           (5)           (23)           (5)           (23)           (5)           (23)           (6)           (4)           (0)           (8,9) | 0 (0)<br>1 (1)<br>3 (4)<br>1 (2)<br>1 (0)<br>0 (0)<br>0 (0)<br>1 (1)                                                                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                         | n         7e           2         (2)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           11         (3)           0         (0)           2         (1)           0         (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n         7.           130         (2.9)           81         (1.8)           71         (1.6)           66         (1.5)           530         (1.19)           932         (8.8)           1         (0.0)           73         (1.6)           379         (8.5)           29         (0.6)           302         (6.8)           304         (2.3)           1311         (2.9)           363         (8.1)           426         (0.6)           126         (2.8)           29         (0.6)           371         (8.3)           218         (4.4)           26         (5.7)           1         (0.0)                                                                                                                                                                    |
| 2005 A<br>B<br>C<br>C<br>F<br>F<br>G<br>H<br>I<br>J<br>K<br>L<br>W<br>N<br>O<br>P<br>Q<br>R<br>R<br>S<br>T<br>U<br>V<br>V<br>Y<br>2005 Total                      |            | 2<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                      | (2)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0                                                                                                                                                                                                                                                                                                                                    | 9<br>9<br>2<br>6<br>3<br>0<br>2<br>5<br>5<br>1<br>15<br>1<br>2<br>5<br>2<br>30<br>7<br>10<br>0<br>7<br>7<br>0<br>0<br>7<br>7<br>0<br>0<br>7<br>7<br>10<br>0<br>7<br>7<br>10<br>0<br>7<br>7<br>10<br>10<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                   | (2.1)<br>(3)<br>(12)<br>(3)<br>(2)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(4)<br>(4)<br>(4)<br>(6)<br>(6)<br>(6)<br>(0)<br>(1)<br>(1)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2                                                                                                                                                                                                                                                     | 1,130<br>1<br>1<br>1<br>1<br>330<br>297<br>0<br>155<br>0<br>351<br>293<br>80<br>1<br>144<br>0<br>1<br>1<br>297<br>1<br>14<br>297<br>1<br>293<br>1<br>1<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>242<br>297<br>1<br>242<br>297<br>1<br>242<br>297<br>1<br>242<br>297<br>1<br>242<br>297<br>1<br>242<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>1<br>297<br>1<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>1<br>297<br>1<br>297<br>1<br>1<br>297<br>1<br>297<br>297<br>1<br>297<br>297<br>297<br>297<br>297<br>297<br>297<br>297 | (1)<br>(1)<br>(1)<br>(1)<br>(70)<br>(81)<br>(66)<br>(0)<br>(52)<br>(62)<br>(62)<br>(62)<br>(62)<br>(62)<br>(62)<br>(62)<br>(6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 ((<br>1 ()<br>0 ()<br>0 ()<br>0 ()<br>0 ()<br>1 ()<br>4 ()<br>0 ()<br>0 ()<br>0 ()<br>0 ()<br>1 ()<br>0 ()<br>0 ()<br>1 ()<br>0 | $\begin{array}{c} 0) & 1 \\ 1) & 3 \\ 3 \\ 1) & 3 \\ 1) & 6 \\ 0) & 1 \\ 1) & 6 \\ 0) & 1 \\ 1 \\ 1) & 1 \\ 1 \\ 1) & 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>2<br>4<br>4<br>3<br>3<br>3<br>1<br>3<br>1<br>2<br>4<br>4<br>1<br>0<br>3<br>3<br>1<br>1<br>2<br>9<br>3<br>6<br>6<br>1<br>1<br>1<br>0<br>8<br>1<br>1<br>0<br>8<br>1<br>1<br>1<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1                | (2)<br>(3)<br>(1)<br>(2)<br>(1)<br>(0)<br>(0)<br>(3)<br>(1)<br>(3)<br>(3)<br>(1)<br>(1)<br>(1)<br>(1)<br>(2)<br>(2)<br>(2)<br>(2)<br>(3)<br>(2)<br>(2)<br>(3)<br>(2)<br>(7)<br>(0)<br>(0)<br>(0)<br>(1)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(1)<br>(2)<br>(2)<br>(1)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2 | 0<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>1<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                          | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                    | 13         (1           2         (           33         (4           19         (2           22         (           0         (           0         (           0         (           15         (           22         (           23         (3           15         (           42         (           43         (           41         (1           14         (4           8         (           6         (           3         ( | 0)       1         3)       3)         3)       1)         1)       1         5)       1         7)       0)         4)       0)         5)       2         3)       0)         0)       0)         9)       1         4)       2         7)       1         5)       1         0)       2)         1)       1         1)       1                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 38         (29)           1         (11)           6         (8)           15         (17)           14         (3)           0         (0)           1         (14)           0         (0)           1         (11)           7         (7)           7         (7)           21         (6)           20         (21)           8         (6)           2         (11)           8         (6)           2         (11)           8         (3)           0         (0)           44         (12)           44         (17)           8         (3)           0         (0)           0         (11)           6         (3)           10         (5)           14         (10)           311         (6, 7) | 19<br>19<br>14<br>11<br>36<br>0<br>4<br>21<br>4<br>11<br>9<br>0<br>6<br>11<br>26<br>30<br>6<br>11<br>26<br>30<br>15<br>7<br>38<br>4<br>12<br>15                     | (15)<br>(26)<br>(18)<br>(12)<br>(8)<br>(5)<br>(0)<br>(4)<br>(6)<br>(31)<br>(5)<br>(3)<br>(6)<br>(21)<br>(6)<br>(21)<br>(6)<br>(21)<br>(6)<br>(22)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23)<br>(23                                                                                                                                      | $\begin{array}{cccc} 1 & (1) \\ 0 & (0) \\ 1 & (1) \\ 1 & (1) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 2 & (1) \\ 0 & (0) \end{array}$            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                         | 0         (2)           0         (2)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0 <t< th=""><th>1:32           129         (2.8)           74         (1.6)           76         (1.6)           89         (1.9)           472         (10.2)           366         (7.9)           32         (0.7)           329         (6.5)           35         (0.8)           96         (2.1)           130         (2.8)           96         (2.1)           130         (2.8)           96         (2.1)           130         (2.8)           96         (2.1)           321         (3.3)           471         (10.2)           29         (6.5)           351         (6.8)           29         (6.5)           143         (3.1)           246         (5.3)           1230         (5.0)           203         (4.4)           143         (3.1)           4,618         (3.1)</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1:32           129         (2.8)           74         (1.6)           76         (1.6)           89         (1.9)           472         (10.2)           366         (7.9)           32         (0.7)           329         (6.5)           35         (0.8)           96         (2.1)           130         (2.8)           96         (2.1)           130         (2.8)           96         (2.1)           130         (2.8)           96         (2.1)           321         (3.3)           471         (10.2)           29         (6.5)           351         (6.8)           29         (6.5)           143         (3.1)           246         (5.3)           1230         (5.0)           203         (4.4)           143         (3.1)           4,618         (3.1) |
| 2006 A<br>B<br>C<br>D<br>F<br>F<br>G<br>H<br>H<br>H<br>J<br>J<br>K<br>L<br>M<br>M<br>N<br>O<br>Q<br>Q<br>R<br>S<br>T<br>U<br>V<br>W<br>X<br>Y<br>2006 Total       |            | 1<br>0<br>1<br>2<br>0<br>0<br>0<br>2<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                      | (1)<br>(0)<br>(1)<br>(2)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0                                                                                                                                                                                                                                                                                                               | 2<br>2<br>0<br>4<br>8<br>0<br>5<br>5<br>5<br>4<br>1<br>1<br>1<br>5<br>3<br>3<br>1<br>6<br>4<br>0<br>1<br>1<br>3<br>0<br>5<br>3<br>3<br>0<br>5<br>3<br>3<br>109<br>333                                                                                                                                                                                                                                                                                                                                                                                                        | (2)<br>(3)<br>(4)<br>(4)<br>(2)<br>(0)<br>(0)<br>(1)<br>(21)<br>(2)<br>(2)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(5)<br>(5)<br>(2)<br>(2)<br>(5)<br>(1)<br>(1)<br>(1)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2                                                                                                                                                                                                                                                       | 1<br>1<br>0<br>2<br>366<br>321<br>0<br>3<br>238<br>0<br>172<br>1<br>1<br>91<br>379<br>347<br>1<br>1<br>0<br>0<br>172<br>1<br>1<br>205<br>141<br>2,708<br>7,597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)<br>(2)<br>(2)<br>(77)<br>(63)<br>(63)<br>(63)<br>(64)<br>(54)<br>(71)<br>(71)<br>(71)<br>(71)<br>(71)<br>(71)<br>(71)<br>(71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ))         22()           ))         2           ))         2           ))         2           ))         4           ))         4           ))         11           23         11           24         23           ))         4           ))         4           ))         11           11         12           ))         11           11         12           ))         15           ))         16           ))         16           ))         4           ))         4           ))         4           ))         12                                 | ) (311)<br>7 (26)<br>3 (5) (11)<br>5 (11)<br>5 (11)<br>5 (12)<br>5 (7)<br>5 (7)<br>6 (4)<br>3 (12)<br>5 (7)<br>6 (4)<br>3 (12)<br>5 (7)<br>6 (4)<br>3 (12)<br>5 (6)<br>6 (4)<br>6 (4)<br>6 (4)<br>7 (8)<br>7 (8)<br>7 (7)<br>7 (2)<br>7 (2 | 5<br>3<br>0<br>1<br>2<br>3<br>0<br>5<br>0<br>0<br>5<br>0<br>0<br>0<br>1<br>1<br>8<br>0<br>0<br>1<br>1<br>8<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0                                                                                 | (2)<br>(8)<br>(5)<br>(0)<br>(0)<br>(1)<br>(2)<br>(1)<br>(0)<br>(2)<br>(2)<br>(0)<br>(0)<br>(2)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(3)<br>(3)<br>(3)<br>(3)<br>(4)<br>(5)<br>(5)<br>(5)<br>(5)<br>(5)<br>(5)<br>(6)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3)<br>(0)<br>(0)<br>(3)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(1)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0 | 38         (4)           28         (2)           21         (2)           37         (1)           0         (1)           24         (2)           11         (1)           30         (7)           38         (3)           14         (1)           32         (2)           42         (1)           12         (4)           30         (1)           12         (4)           30         (1)           10         (1)             | 0)<br>8)<br>7)<br>4)<br>9)<br>0)<br>1)<br>6)<br>1)<br>1)<br>1)<br>1)<br>6)<br>1<br>1)<br>1)<br>1)<br>1)<br>2)<br>1)<br>2)<br>1)<br>2)<br>2)<br>2)<br>2)<br>18<br>18                                                                                                                                                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 51         (39)           0         (0)           14         (18)           8         (8)           12         (3)           1         (0)           0         (0)           9         (9)           32         (11)           41         (13)           0         (0)           31         (25)           8         (2)           10         (2)           11         (11)           0         (0)           48         (32)           10         (25)           1         (0)           7         (3)           14         (6)           (11)         (7)           330         (6-8)           950         (6-8)                                                                                             | 10<br>10<br>32<br>22<br>0<br>5<br>13<br>0<br>11<br>4<br>23<br>6<br>11<br>22<br>23<br>8<br>10<br>27<br>12<br>23<br>15<br>11<br>20<br>16<br>336<br>(                  | (3)<br>(10)<br>(19)<br>(5)<br>(3)<br>(4)<br>(19)<br>(3)<br>(34)<br>(18)<br>(55)<br>(4)<br>(5)<br>(5)<br>(9)<br>(11)<br>(7.0)                                                                                                                                                                                                                  | $\begin{array}{cccc} 1 & (0) \\ 0 & (0) \\ 3 & (1) \\ 0 & (0) \\ 2 & (2) \\ 0 & (0) \\ 0 & (0) \\ 2 & (0) \\ 1 & (1) \\ 0 & (0) \\ 1 & (3) \end{array}$ | 2 (11)<br>14 (4)<br>3 (7)<br>4 (3)<br>1 (1)<br>1 (0)<br>9 (2)<br>5 (4)<br>3 (1)<br>1 (3)<br>9 (2)<br>5 (4)<br>3 (1)<br>1 (3)<br>9 (2)<br>5 (2)<br>6 (3)<br>9 (6)<br>87 (3.9) | 0 (0)<br>2 (3)<br>0 (0)<br>0 (0)<br>1 (1)<br>0 (0)<br>1 (1)<br>0 (0)<br>0 (0)<br>1 (1)<br>0 (0)<br>0 | 132         (2.8)           64         (1.3)           80         (1.7)           105         (2.2)           478         (10.0)           392         (8.2)           1         (0.0)           192         (6.4)           379         (7.9)           128         (2.7)           421         (2.6)           128         (2.7)           423         (8.8)           912         (2.4)           128         (2.7)           229         (0.6)           152         (3.2)           22         (0.5)           152         (3.2)           228         (5.0)           238         (5.0)           218         (4.5)           151         (3.1)           4,800         13.881                                                                                               |

| Table 2  | 0 Admissions | s by primary di  | agnostic g  | group (unplani    | ned - followin     | g surgery    | ) by NHS      | trust, 2004 - 2006           |            |                  | Diagnos               | tic C-            | oun        |            |                        |            |                     |                                   |                    |                       |                  |                | ,                                              |
|----------|--------------|------------------|-------------|-------------------|--------------------|--------------|---------------|------------------------------|------------|------------------|-----------------------|-------------------|------------|------------|------------------------|------------|---------------------|-----------------------------------|--------------------|-----------------------|------------------|----------------|------------------------------------------------|
| Year     | NHS Trust    | Blood / lym<br>n | phatic<br>% | Body wall an<br>n | nd cavities<br>%   | Cardiov<br>n | ascular<br>%  | Endocrine / metabolic<br>n % | Gastr<br>n | ointestinal<br>% | Diagnos<br>Infec<br>n | tion<br>%         | Multisyste | em<br>%    | Musculoskeletal<br>n % | 1          | leurological<br>n % | Oncology<br>n %                   | Respiratory<br>n % | r Trauma<br>n %       | Other<br>n %     | Unknown<br>n % | Total<br>n %                                   |
| 2004     | A            | 1                | (2)<br>(0)  | 3                 | (5)<br>(11)        | 0            | (0)<br>(0)    | 0 (0                         | ) 1        | 1 (19<br>4 (39   | ) 1                   | (2)<br>(8)        | 0          | (0)<br>(0) |                        | (4)<br>(3) | 16 (28<br>2 (6      | ) 7 (12)<br>0 (0)                 | 3 (<br>7 (1        | 5) 4 (7)<br>9) 1 (3)  | 9 (16)<br>4 (11) | 0 (0)<br>0 (0) | 57 (7.4)<br>36 (4.7)                           |
|          | c            | 0                | (0)         | 2                 | (11)               | 1            | (6)           | 0 (0                         | )          | 4 (22            | :) 1                  | (6)               | 0          | (0)        | 0 (                    | (0)        | 5 (28               | ) 0 (0)                           | 2 (1               | 1) 0 (0)              | 3 (17)           | 0 (0)          | 18 (2.3)                                       |
|          | D<br>E       | 1                | (1)<br>(2)  | 0                 | (0)<br>(0)         | 1<br>8       | (1)<br>(13)   | 2 (3                         | ) 1        | 4 (21            | ) 2                   | (6)<br>(3)<br>(1) | 0          | (0)<br>(0) | 2 (                    | (7)<br>(3) | 5 (7<br>7 (11       | ) 11 (17)                         |                    | 2) 0 (0)              | 4 (6)<br>2 (3)   | 0 (0)          | 67 (8.7)<br>63 (8.2)<br>98 (12.7)              |
|          | F<br>G       | 0                | (0)<br>(0)  | 4                 | (4)                | 68<br>1      | (69)<br>(100) | 1 (1                         |            | 0 (0             | ) 1                   | (1)               | 0          | (0)<br>(0) |                        | (0)<br>(0) | 3 (3<br>0 (0        |                                   | 18 (1              | 8) 1 (1)<br>0) 0 (0)  | 1 (1)            | 1 (1)          | 1 (01)                                         |
|          | H            | 1                | (4)<br>(5)  | 2                 | (9)                | 0            | (0)           | 2 (9                         | )          | 3 (13<br>4 (20   |                       | (0)<br>(5)        | 0          | (0)<br>(0) | 0 (                    | (0)<br>(0) | 3 (13<br>0 (0       | ) 0 (0)                           | 3 (1<br>5 (2       |                       | 7 (30)<br>3 (15) | 0 (0)          | 23 (3.0)<br>20 (2.6)<br>6 (0.8)                |
|          | J            | 1                | (17)        | 0                 | (0)                | 4<br>0       | (0)           | 0 (0                         | )          | 3 (50            | ) 0                   | (0)               | 0          | (0)        | 0 (                    | (0)        | 0 (0                | ) 0 (0)                           | 1 (1               | 7) 0 (0)              | 1 (17)           | 0 (0)          | 6 (0.8)                                        |
|          | к<br>L       | 0                | (0)<br>(0)  | 4                 | (5)<br>(0)         | 9            | (12)<br>(0)   | 1 (1                         | )          | 1 (14<br>3 (38   | ) 0                   | (0)               | 0          | (0)<br>(0) | 0 (                    | (3)<br>(0) | 4 (5<br>1 (13       | 0 (0)                             | 22 (2<br>2 (2      | 5) 0 (0)              | 5 (6)<br>2 (25)  | 0 (0)<br>0 (0) | 77 (10.0)<br>8 (1.0)<br>36 (4.7)               |
|          | M<br>N       | 0                | (0)<br>(0)  | 1                 | (3)                | 1            | (3)           | 0 (0                         | )<br>;)    | 4 (11<br>2 (7    |                       | (3)<br>(0)        | 0          | (0)<br>(3) |                        | (0)<br>(0) | 2 (6<br>5 (17       |                                   |                    | 4) 5 (14)<br>2) 0 (0) | 3 (8)<br>1 (3)   | 0 (0)<br>0 (0) | 29 (3.8)                                       |
|          | 0            | 0                | (0)<br>(0)  | 0                 | (0)                | 4            | (67)<br>(9)   | 0 (0                         | )          | 0 (0 3 (13       | ) 0                   | (0)<br>(13)       | 0          | (0)<br>(0) | 0 (                    | (0)<br>(0) | 0 (0 2 (9           | ) 1 (17)                          | 1 (1<br>7 (3       | 7) 0 (0)              | 0 (0)<br>2 (9)   | 0 (0)<br>0 (0) | 6 (0.8)<br>23 (3.0)<br>36 (4.7)                |
|          | Q            | 0                | (0)         | 2                 | (6)                | 1            | (3)           | 0 (0                         | )          | 8 (22            | ) 2                   | (6)               | 0          | (0)        | 0 (                    | (0)        | 3 (8                | ) 1 (3)                           | 17 (4              | 7) 1 (3)              | 1 (3)            | 0 (0)          | 36 (4.7)<br>31 (4.0)                           |
|          | R<br>S       | 1                | (3)<br>(0)  | 0                 | (0)<br>(0)         | 0            | (13)<br>(0)   | 0 (0                         | )          | 9 (29<br>1 (8    | ) 0                   | (3)<br>(0)        | 0          | (0)<br>(0) | 3 (2                   | (0)<br>25) | 4 (13<br>1 (8       | 0 (0)                             | 5 (4               | 2) 0 (0)              | 1 (3)<br>1 (8)   | 0 (0)          | 12 (1.6)                                       |
|          | T<br>U       | 2                | (7)         | 0                 | (0)                | 0            | (0)<br>(13)   | 0 (0                         | ) 1<br>)   | 1 (37<br>3 (38   |                       | (7)<br>(0)        | 0          | (0)<br>(0) |                        | (0)<br>(0) | 3 (10<br>0 (0       | ) <u>3</u> (10)<br>) <u>0</u> (0) | 6 (2<br>4 (5       |                       | 1 (3)<br>0 (0)   | 0 (0)          | 8 (1.0)                                        |
|          | V            | 0                | (0)<br>(0)  | 4                 | (6)<br>(27)        | 6            | (8)           | 1 (1                         | ) 4        | 10 (56<br>2 (18  |                       | (3)<br>(9)        | 0          | (0)<br>(0) | 0 (                    | (0)<br>(0) | 2 (3                | 2 (3)                             |                    | 8) 4 (6)              | 3 (4)            | 1 (1)<br>0 (0) | 71 (9.2)<br>11 (1.4)                           |
| 000 ( T. | x            | 0                | (0)         | 0                 | (0)                | 0            | (0)           | 0 (0                         | j –        | 0 (0             | ) 0                   | (0)               | 0          | (0)        | 0 (                    | (0)        | 0 (0<br>68 (8.8     | 2 (33)                            | 1 (1               | 7) 1 (17)             | 2 (33)           | 0 (0)          | 6 (0.8)                                        |
| 2004 To  | A            |                  | (1.2)       | 30                | (3.9)              | 113          | (14.6)        | 9 (1.2                       |            |                  |                       | (4.5)             |            | (0.1)      |                        | .9)        |                     |                                   |                    |                       |                  | 2 (0.3)        | 773                                            |
| 2005     | B            | 0                | (0)<br>(0)  | 3                 | (3)<br>(16)        | 1            | (6)<br>(5)    | 0 (0                         | )          | 8 (23<br>4 (21   | ) 3                   | (3)<br>(16)       | 0          | (0)<br>(0) | 0 (                    | (0)<br>(0) | 11 (31<br>1 (5      | 0 (0)                             | 7 (3               |                       | 3 (9)<br>0 (0)   | 0 (0)<br>0 (0) | 35 (4.8)<br>19 (2.6)                           |
|          | C<br>D       | 1                | (8)<br>(1)  | 0                 | (0)<br>(0)         | 1            | (8)<br>(3)    | 0 (0                         | ) 1        | 1 (8<br>3 (17    |                       | (8)<br>(13)       | 0          | (0)<br>(1) |                        | (0)<br>(4) | 2 (17<br>10 (13     | 8 (11)                            |                    | 2) 2 (3)              | 1 (8)<br>1 (1)   | 0 (0)<br>0 (0) | 12 (1.6)<br>75 (10.2)<br>56 (7.6)<br>79 (10.7) |
|          | E<br>F       | 1                | (2)<br>(0)  | 1                 | (2)<br>(4)         | 8<br>65      | (14)<br>(82)  | 2 (4                         | .) 1<br>I) | 3 (23<br>1 (1    |                       | (4)<br>(1)        | 0          | (0)<br>(0) | 0 (                    | (0)<br>(0) | 4 (7<br>0 (0        | ) <u>6 (11)</u><br>) <u>1 (1)</u> | 14 (2              | 5) 0 (0)<br>9) 0 (0)  | 5 (9)<br>1 (1)   | 0 (0)<br>0 (0) | 56 (7.6)<br>79 (10.7)                          |
|          | G<br>H       | 0                | (0)<br>(0)  | 0                 | (0) (4)            | 0            | (0)<br>(0)    | 0 (0                         | )          | 0 (0             | ) 0                   | (0)<br>(9)        | 0          | (0)<br>(0) | 0 (                    | (0)<br>(0) | 1 (33<br>4 (17      | 0 (0)                             | 0 (                | 0) 2 (67)             | 0 (0) 4 (17)     | 0 (0)<br>0 (0) | 3 (0.4)<br>23 (3.1)                            |
|          | I.           | 0                | (0)         | 0                 | (0)                | 9            | (28)          | 3 (9                         | )          | 1 (3             | ) 1                   | (3)               | 0          | (0)        | 0 (                    | (0)        | 1 (3                | ) 1 (3)                           | 12 (3              | 8) 1 (3)              | 3 (9)            | 0 (0)          | 32 (4.3)                                       |
|          | K            | 0                | (0)<br>(1)  | 2                 | (29)               | 0<br>11      | (0)<br>(12)   | 0 (0                         | )<br>) 2   | 4 (57<br>27 (29  | ) 12                  | (0)<br>(13)       | 0          | (0)<br>(1) | 1 (                    | (0)<br>(1) | 0 (0                | ) 1 (1)                           |                    | 0) 0 (0)<br>6) 2 (2)  | 1 (14)<br>9 (10) | 0 (0)          | 7 (1.0)<br>93 (12.6)<br>8 (1.1)                |
|          | L            | 0                | (0)<br>(3)  | 0                 | (0)                | 0            | (0)<br>(6)    | 0 (0                         |            | 1 (13<br>6 (19   |                       | (0)<br>(0)        | 0          | (0)<br>(0) |                        | (0)<br>(0) | 4 (50<br>7 (23      | 0 (0)                             | 1 (1<br>10 (3      |                       | 0 (0) 2 (6)      | 0 (0)          | 31 (4.2)                                       |
|          | N<br>O       | 0                | (0)<br>(0)  | 1                 | (5)<br>(0)         | 2            | (11) (60)     | 1 (5<br>0 (0                 | )          | 5 (26<br>0 (0    | i) O                  | (0)<br>(0)        | 0          | (0)<br>(0) | 0 (                    | (0)<br>(0) | 2 (11               | ) 1 (5)                           | 4 (2               |                       | 0 (0)            | 0 (0)          | 19 (2.6)<br>5 (0.7)                            |
|          | P            | 0                | (0)         | 1                 | (4)                | 6            | (26)          | 0 (0                         | )          | 2 (9             | ) 2                   | (9)               | 1          | (4)        | 0 (                    | (0)        | 2 (9                | ) 1 (4)                           | 7 (3               | 0) 1 (4)              | 0 (0)            | 0 (0)          | 23 (3.1)<br>35 (4.8)                           |
|          | R            | 0                | (0)<br>(0)  | 4                 | (11)<br>(5)        | 0            | (0)<br>(14)   | 0 (0                         | )          | 1 (31<br>1 (5    | ) 2                   | (14)<br>(10)      | 0          | (0)<br>(0) | 0 (                    | (0)<br>(0) | 4 (11<br>4 (19      | ) 1 (5)                           | 7 (2<br>5 (2       | 4) 2 (10)             | 1 (3)<br>1 (5)   | 0 (0)<br>0 (0) | 21 (2.9)                                       |
|          | S<br>T       | 0                | (0)<br>(0)  | 0                 | (0)<br>(0)         | 1            | (11)<br>(10)  | 0 (0                         | )<br>)     | 1 (11<br>8 (38   |                       | (11)<br>(0)       | 0          | (0)<br>(0) |                        | 22)<br>(5) | 1 (11<br>1 (5       | 0 (0) 2 (10)                      | 2 (2<br>5 (2       | 2) 0 (0)<br>4) 0 (0)  | 1 (11)<br>2 (10) | 0 (0)<br>0 (0) | 9 (1.2)<br>21 (2.9)                            |
|          | U<br>V       | 0                | (0)<br>(2)  | 0                 | (0)<br>(4)         | 0<br>13      | (0)<br>(24)   | 0 (0                         | )<br>.) *  | 5 (71<br>4 (25   |                       | (0)<br>(0)        | 0          | (0)<br>(0) | 0 (                    | (0)<br>(2) | 0 (0                | 0 (0) 2 (4)                       | 2 (2               | 9) 0 (0)<br>5) 4 (7)  | 0 (0)<br>3 (5)   | 0 (0) 10 (18)  | 7 (1.0)<br>55 (7.5)                            |
|          | w            | 1                | (4)<br>(0)  | 0                 | (0)                | 3            | (12)<br>(0)   | 0 (0                         | )          | 5 (19<br>1 (50   | ) 1                   | (4)<br>(0)        | 0          | (0)<br>(0) | 2 (                    | (8)<br>(0) | 0 (0                | ) 1 (4)                           |                    | 3) 1 (4)              | 6 (23)<br>0 (0)  | 0 (0)<br>0 (0) | 7 (1.0)<br>55 (7.5)<br>26 (3.5)<br>2 (0.3)     |
|          | Ŷ            | 0                | (0)         | 1                 | (3)                | 3            | (8)           | 1 (3                         | )          | 7 (18            | ) 5                   | (13)              | 2          | (5)        | 2 (                    | (5)        | 6 (15               | 0 (0)                             | 7 (1               | 8) 2 (5)              | 4 (10)           | 0 (0)          | 40 (5.4)                                       |
| 2005 To  |              | 1                | (1.0)       | 23                | (3.1)              | 137          | (18.6)        | 11 (1.5                      |            | 13 (19.4         |                       | (6.7)             |            | (0.7)      | 12 (1.                 |            | 76 (10.3)           |                                   |                    |                       |                  | 10 (1.4)       |                                                |
| 2006     | A<br>B       | 1                | (2)<br>(0)  | 0                 | (0) (3)            | 1            | (2)           | 0 (0                         | ) 1        | 3 (30<br>0 (25   | ) 3                   | (7)<br>(8)        | 3          | (7)<br>(0) | 2 (                    | (5)<br>(5) | 5 (11<br>0 (0       | ) 1 (3)                           |                    | 5) 2 (5)              | 2 (5)<br>5 (13)  | 0 (0)<br>1 (3) | 44 (5.5)<br>40 (5.0)                           |
|          | C<br>D       | 0                | (0) (1)     | 0                 | (0) (1)            | 0            | (0)<br>(6)    | 0 (0<br>3 (4                 |            | 2 (20            |                       | (20)<br>(3)       | 0          | (0)<br>(0) |                        | 20)<br>(1) | 2 (20<br>6 (9       | 8 (12)                            | 1 (1 20 (2         |                       | 1 (10)<br>5 (7)  | 0 (0)          | 10 (1.3)<br>69 (8.6)                           |
|          | E            | 1                | (1)<br>(2)  | 3                 | (3)<br>(0)         | 18<br>48     | (18) (83)     | 3 (3                         | ) 1        | 9 (19            |                       | (3)<br>(0)        | 0          | (0)<br>(0) | 3 (                    | (3)<br>(0) | 7 (7                | ) 7 (7)                           | 23 (2<br>7 (1      | 3) 1 (1)<br>2) 0 (0)  | 11 (11)<br>0 (0) | 0 (0)<br>1 (2) | 10 (1.3)<br>69 (8.6)<br>99 (12.4)<br>58 (7.3)  |
|          | G            | 0                | (0)         | 0                 | (0)                | 0            | (0)           | 0 (0                         | )          | 0 (0             | ) 0                   | (0)               | 0          | (0)        | 0 (                    | (0)        | 3 (43               | 2 (29)                            | 0 (                | 0) 2 (29)<br>6) 0 (0) | 0 (0)            | 0 (0)          | 7 (0.9)<br>16 (2.0)                            |
|          | n<br>I       | 0                | (6)<br>(0)  | 0                 | (6)<br>(0)         | 0<br>8       | (0)<br>(16)   | 0 (0                         | :)         | 4 (25<br>5 (10   | ) 4                   | (13)<br>(8)       | 0          | (0)<br>(0) | 0 (                    | (6)<br>(0) | 2 (13<br>3 (6       | ) 1 (2)                           | 16 (3              | 2) 8 (16)             | 3 (19)<br>2 (4)  | 0 (0)<br>2 (4) | 50 (6.3)                                       |
|          | J<br>K       | 1                | (6)<br>(0)  | 3<br>5            | (19)<br>(6)        | 0<br>11      | (0)<br>(13)   | 1 (6                         | ) 2        | 6 (38<br>27 (31  |                       | (0)<br>(5)        | 0          | (0)<br>(1) |                        | (0)<br>(0) | 0 (0 6 (7           |                                   | 4 (2               | 5) 1 (6)<br>8) 5 (6)  | 0 (0)<br>9 (10)  | 0 (0)<br>0 (0) | 16 (2.0)<br>88 (11.0)                          |
|          | L            | 0                | (0) (2)     | 1                 | (5)                | 2            | (9)<br>(0)    | 1 (5<br>1 (2                 | )          | 5 (23<br>8 (19   | ) 2                   | (9)<br>(9)        | 0          | (0)<br>(0) | 0 (                    | (0)<br>(9) | 1 (5<br>3 (7        | ) 1 (5)                           | 4 (1<br>11 (2      | 8) 2 (9)              | 3 (14)<br>4 (9)  | 0 (0)          | 22 (2.8)<br>43 (5.4)                           |
|          | N            | 1                | (5)         | 0                 | (0)                | 4            | (20)          | 0 (0                         | )          | 3 (15<br>1 (33   | ) 0                   | (0)               | 0          | (0)        | 0 (                    | (0)        | 3 (15               | 0 (0)                             | 8 (4               | 0) 1 (5)              | 0 (0)            | 0 (0)          | 20 (2.5)<br>3 (0.4)<br>20 (2.5)                |
|          | P            | 1                | (0)<br>(5)  | 2                 | (0)<br>(10)<br>(0) | 1            | (67)<br>(5)   | 0 (0                         | )          | 3 (15            | ) 1                   | (0)<br>(5)<br>(0) | 1          | (0)<br>(5) | 0 (                    | (0)<br>(0) | 1 (5                | ) 1 (5)                           | 3 (1               | 5) 1 (5)              | 5 (25)           | 0 (0)          | 20 (2.5)                                       |
| 1        | Q<br>R       | 0                | (0)<br>(0)  | 0                 | (0)                | 0<br>5       | (0)<br>(23)   | 0 (0                         | )          | 0 (71<br>4 (18   | ) 1                   | (5)               | 0          | (0)<br>(0) | 0 (                    | (0)<br>(0) | 1 (7<br>4 (18       | ) 1 (5)                           | 3 (2<br>7 (3       | 2) 0 (0)              | 0 (0)            | 0 (0)          | 14 (1.8)<br>22 (2.8)                           |
|          | S<br>T       | 1                | (11)<br>(0) | 0                 | (0)<br>(6)         | 0            | (0)           | 0 (0                         | )          | 0 (0             | ) 0                   | (0)<br>(6)        | 0          | (0)        | 0 (                    | (0)<br>(0) | 0 (0                | 0 (0)                             | 3 (3<br>3 (1       |                       | 2 (22)           | 0 (0)          | 9 (1.1)<br>17 (2.1)                            |
|          | U            | 0                | (0)         | 0                 | (0)                | 1            | (13)          | 0 (0                         | )          | 2 (25            | ) 2                   | (25)              | 0          | (0)        | 0 (                    | (0)        | 0 (0                | ) 0 (0)                           | 3 (3               | 8) 0 (0)              | 0 (0)            | 0 (0)          | 8 (1.0)                                        |
|          | w            | 1                | (1)<br>(6)  | 6<br>0            | (9)<br>(0)         | 23<br>2      | (33)<br>(12)  | 0 (0                         |            | 6 (23<br>5 (29   | ) 3                   | (4)<br>(18)       | 0          | (0)<br>(0) | 0 (                    | (0)<br>(0) | 3 (4<br>0 (0        | ) 0 (0)                           | 12 (1<br>3 (1      | 8) 0 (0)              | 1 (1)<br>3 (18)  | 0 (0)<br>0 (0) | 70 (8.8)<br>17 (2.1)                           |
|          | Y            | 0                | (0)<br>(0)  | 0<br>1            | (0)<br>(3)         | 0            | (0)<br>(6)    | 0 (0                         | )          | 2 (67<br>2 (6    | ) 3                   | (0)<br>(9)        | 0          | (0)<br>(0) | 4 (1                   | (0)<br>2)  | 0 (0 4 (12          | 2 (6)                             | 1 (3<br>11 (3      | 3) 3 (9)              | 0 (0)<br>1 (3)   | 0 (0)<br>0 (0) | 3 (0.4)<br>33 (4.1)                            |
| 2006 To  | otal         | 12               | (1.5)       | 26                | (3.3)              | 134          | (16.8)        | 14 (1.8                      |            | 6 (20.8          | ) 43                  | (5.4)             |            | (0.6)      | 19 (2.                 | .4)        | 55 (6.9             | 40 (5.0)                          | 180 (22.           | 6) 42 (5.3)           | 58 (7.3)         | 4 (0.5)        | 798                                            |
| Grand    | Total        | 28               | (1.2)       | 79                | (3.4)              | 384          | (16.6)        | 34 (1.5                      | ) 46       | 69 (20.3         | ) 127                 | (5.5)             | 11 (       | (0.5)      | 46 (2.                 | .0)        | 199 (8.6            | 119 (5.2)                         | 531 (23.           | 0) 101 (4.4)          | 163 (7.1)        | 16 (0.7)       | 2,307                                          |

#### Table 20 Admissions by primary diagnostic group (unplanned - following surgery) by NHS trust, 2004 - 2006

| viru         Bioch (mplate)         Bioch (mplate) <th>Table</th> <th>21 Admissions</th> <th>s by primary diagno</th> <th>stic group</th> <th>(planned - other) b</th> <th>y NHS tr</th> <th>rust, 2004 - 20</th> <th>06</th> <th></th> <th>r</th> <th>Diagnostic G</th> <th>20110</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> | Table | 21 Admissions                                                                                                                                 | s by primary diagno                                                                                                                                                                                                                               | stic group                                                                                                                                              | (planned - other) b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y NHS tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rust, 2004 - 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Diagnostic G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B         0         0         5         73         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Year  | NHS Trust                                                                                                                                     |                                                                                                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             | astrointestinal                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Infection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Multisystem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total<br>n %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dot         Interview         Inte                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | B<br>C<br>D<br>E<br>G<br>G<br>H<br>H<br>J<br>K<br>K<br>N<br>N<br>O<br>P<br>Q<br>Q<br>R<br>R<br>S<br>T<br>U<br>V<br>W<br>X                     |                                                                                                                                                                                                                                                   | (0)<br>(0)<br>(1)<br>(1)<br>(0)<br>(0)<br>(0)<br>(4)<br>(4)<br>(50)<br>(50)<br>(1)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0 | 5         (22           1         (11           1         (2           9         (2           0         (10           1         (2           0         (10           1         (2           1         (2           0         (10           0         (10           0         (10           0         (10           0         (10           0         (10           0         (10           0         (10           0         (10           0         (10           0         (10           0         (10           0         (10           0         (10           0         (10                                                                                                                                                          | 3)       7)       3)       4)       11:       3)       2)       2)       3)       2)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3)       3) <th>1         (5)           0         (0)           1         (3)           122         (51)           10         (40)           0         (0)           1         (2)           16         (31)           0         (0)           1         (2)           14         (47)           50         (60)           0         (0)           0         (0)           0         (0)           0         (0)           2         (177)           0         (17)           122         (45)</th> <th><math display="block">\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 </math></th> <th>D)       D)       S)       D)       D)</th> <th><math display="block">\begin{array}{cccc} 7 &amp; (32) \\ 0 &amp; (0) \\ 0 &amp; (0) \\ 11 &amp; (5) \\ 1 &amp; (4) \\ 0 &amp; (0) \\ 19 &amp; (35) \\ 5 &amp; (10) \\ 1 &amp; (50) \\ 8 &amp; (7) \\ 0 &amp; (0) \\ 2 &amp; (11) \\ 1 &amp; (17) \\ 1 &amp; (2) \\ 7 &amp; (8) \\ 1 &amp; (9) \\ 9 &amp; (17) \\ 1 &amp; (2) \\ 7 &amp; (8) \\ 1 &amp; (9) \\ 9 &amp; (17) \\ 1 &amp; (2) \\ 7 &amp; (8) \\ 1 &amp; (9) \\ 9 &amp; (17) \\ 1 &amp; (2) \\ 7 &amp; (8) \\ 1 &amp; (9) \\ 9 &amp; (17) \\ 1 &amp; (2) \\ 1 &amp; (17) \\ 0 &amp; (0) \\ \end{array}</math></th> <th>0 (0)<br/>0 (0)<br/>2 (6)<br/>2 (1)<br/>0 (0)<br/>1 (100)<br/>0 (0)<br/>0 (0)</th> <th>0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0</th> <th>0<br/>0<br/>2<br/>1<br/>0<br/>1<br/>2<br/>0<br/>3<br/>4<br/>0<br/>0<br/>4<br/>2<br/>2<br/>1<br/>1<br/>3<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>1</th> <th>(0)<br/>(0)<br/>(1)<br/>(1)<br/>(2)<br/>(4)<br/>(2)<br/>(3)<br/>(16)<br/>(3)<br/>(16)<br/>(0)<br/>(0)<br/>(2)<br/>(2)<br/>(21)<br/>(0)<br/>(0)<br/>(0)<br/>(0)<br/>(0)</th> <th>2 (9)<br/>0 (0)<br/>7 (19)<br/>14 (6)<br/>0 (0)<br/>0 (0)<br/>9 (16)<br/>1 (2)<br/>0 (2)<br/>7 (7)<br/>2 (8)<br/>2 (11)<br/>1 (7)<br/>1 (2)<br/>4 (5)<br/>3 (27)<br/>2 (33)<br/>0 (0)<br/>4 (17)<br/>2 (1)</th> <th><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></th> <th>4         (18)           5         (83)           18         (50)           62         (26)           10         (40)           0         (0)           4         (7)           13         (25)           0         (0)           22         (21)           16         (64)           8         (42)           1         (17)           7         (11)           5         (6)           10         (19)           6         (43)           5         (42)           2         (33)           2         (67)           15         (65)           3         (1)</th> <th>0 (0)<br/>0 (0)<br/>0</th> <th>2 (9)<br/>0 (0)<br/>3 (8)<br/>11 (5)<br/>2 (8)<br/>0 (0)<br/>5 (9)<br/>7 (14)<br/>0 (0)<br/>5 (5)<br/>1 (4)<br/>3 (16)<br/>0 (0)<br/>0 (0)<br/>0 (0)<br/>0 (0)<br/>1 (17)<br/>0 (0)<br/>1 (17)<br/>0 (0)<br/>0 (0</th> <th>0 (0<br/>0 (0)<br/>0 (0<br/>0 (0)<br/>0 (0)<br/>0 (0<br/>0 (0)<br/>0 (0</th> <th>)         22         (2.0)           )         6         (3.3)           )         240         (21.8)           )         25         (2.3)           )         1         (0.1)           )         55         (5.0)           )         55         (5.0)           )         55         (2.2)           )         107         (9.7)           )         25         (2.3)           )         12         (0.2)           )         55         (3.6)           )         12         (1.7)           )         62         (5.6)           )         14         (1.3)           )         12         (1.1)           )         12         (1.1)           )         12         (1.1)           )         3         (0.3)           )         23         (2.1)           23         (2.1)         23</th> | 1         (5)           0         (0)           1         (3)           122         (51)           10         (40)           0         (0)           1         (2)           16         (31)           0         (0)           1         (2)           14         (47)           50         (60)           0         (0)           0         (0)           0         (0)           0         (0)           2         (177)           0         (17)           122         (45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D)       D)       S)       D)       D) | $\begin{array}{cccc} 7 & (32) \\ 0 & (0) \\ 0 & (0) \\ 11 & (5) \\ 1 & (4) \\ 0 & (0) \\ 19 & (35) \\ 5 & (10) \\ 1 & (50) \\ 8 & (7) \\ 0 & (0) \\ 2 & (11) \\ 1 & (17) \\ 1 & (2) \\ 7 & (8) \\ 1 & (9) \\ 9 & (17) \\ 1 & (2) \\ 7 & (8) \\ 1 & (9) \\ 9 & (17) \\ 1 & (2) \\ 7 & (8) \\ 1 & (9) \\ 9 & (17) \\ 1 & (2) \\ 7 & (8) \\ 1 & (9) \\ 9 & (17) \\ 1 & (2) \\ 1 & (17) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ \end{array}$ | 0 (0)<br>0 (0)<br>2 (6)<br>2 (1)<br>0 (0)<br>1 (100)<br>0 (0)<br>0 (0) | 0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0 | 0<br>0<br>2<br>1<br>0<br>1<br>2<br>0<br>3<br>4<br>0<br>0<br>4<br>2<br>2<br>1<br>1<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1      | (0)<br>(0)<br>(1)<br>(1)<br>(2)<br>(4)<br>(2)<br>(3)<br>(16)<br>(3)<br>(16)<br>(0)<br>(0)<br>(2)<br>(2)<br>(21)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                   | 2 (9)<br>0 (0)<br>7 (19)<br>14 (6)<br>0 (0)<br>0 (0)<br>9 (16)<br>1 (2)<br>0 (2)<br>7 (7)<br>2 (8)<br>2 (11)<br>1 (7)<br>1 (2)<br>4 (5)<br>3 (27)<br>2 (33)<br>0 (0)<br>4 (17)<br>2 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4         (18)           5         (83)           18         (50)           62         (26)           10         (40)           0         (0)           4         (7)           13         (25)           0         (0)           22         (21)           16         (64)           8         (42)           1         (17)           7         (11)           5         (6)           10         (19)           6         (43)           5         (42)           2         (33)           2         (67)           15         (65)           3         (1)                                                                             | 0 (0)<br>0  | 2 (9)<br>0 (0)<br>3 (8)<br>11 (5)<br>2 (8)<br>0 (0)<br>5 (9)<br>7 (14)<br>0 (0)<br>5 (5)<br>1 (4)<br>3 (16)<br>0 (0)<br>0 (0)<br>0 (0)<br>0 (0)<br>1 (17)<br>0 (0)<br>1 (17)<br>0 (0)<br>0 (0 | 0 (0<br>0 (0)<br>0 (0<br>0 (0)<br>0 (0)<br>0 (0<br>0 (0)<br>0 (0 | )         22         (2.0)           )         6         (3.3)           )         240         (21.8)           )         25         (2.3)           )         1         (0.1)           )         55         (5.0)           )         55         (5.0)           )         55         (2.2)           )         107         (9.7)           )         25         (2.3)           )         12         (0.2)           )         55         (3.6)           )         12         (1.7)           )         62         (5.6)           )         14         (1.3)           )         12         (1.1)           )         12         (1.1)           )         12         (1.1)           )         3         (0.3)           )         23         (2.1)           23         (2.1)         23                                       |
| B         0         00         1         00         00         1         00         00         1         00         00         0         1         00         00         0         1         00         00         0         1         00         00         1         00         00         1         00         00         1         00         00         1         00         00         1         00         00         1         00         00         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0        0        0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | otal                                                                                                                                          |                                                                                                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| B         0         (0)         1         (9)         1         (9)         0         (0)         2         (18)         0         (0)         0         (0)         1         (9)         3         27         0         0         1         (9)         3         27         0         0         1         (9)         3         27         0         0         1         (9)         3         27         0         0         1         (9)         3         27         0         0         1         (9)         3         27         0         0         1         (9)         3         27         0         0         1         (9)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | C<br>D<br>F<br>F<br>J<br>K<br>K<br>K<br>K<br>V<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                     | 0<br>0<br>2<br>1<br>7<br>4<br>4<br>0<br>4<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                         | (0)<br>(0)<br>(1)<br>(1)<br>(4)<br>(11)<br>(6)<br>(6)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0                              | 1         (6)           0         (1)           0         (1)           8         (6)           1         (4)           2         (2)           0         (1)           4         (44)           6         (1)           0         (1)           1         (2)           0         (1)           4         (22)           0         (1)           4         (22)           0         (1)           4         (22)           0         (1)           1         (2)           0         (1)           1         (2)           0         (1)           0         (1)           1         (2)           0         (1)           1         (2)           0         (1)           0         (1)           0         (1)           0         (1) | 3)<br>3)<br>3)<br>3)<br>4)<br>4)<br>5)<br>7)<br>3)<br>1)<br>3)<br>3)<br>(1)<br>3)<br>(2)<br>3)<br>(1)<br>3)<br>(2)<br>(3)<br>(3)<br>(3)<br>(3)<br>(3)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 (0)<br>1 (13)<br>4 (9)<br>66 (43)<br>8 (35)<br>1 (2)<br>37 (51)<br>0 (0)<br>1 (2)<br>31 (34)<br>0 (0)<br>1 (50)<br>3 (60)<br>3 (60)<br>0 (0)<br>1 (50)<br>0 (0)<br>1 (20)<br>5 (11)<br>9 (50)<br>0 (90)<br>1 (20)<br>5 (11)<br>1 (20)<br>5 (11)<br>5 ( | 0 (0<br>0 (0<br>1 (2<br>0 (0<br>0 (0<br>0 (0<br>1 (1<br>0 (0<br>2 (2<br>0 (0<br>0 (0)))))))))))))))))))))))))))))))))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D)<br>D)<br>D)<br>D)<br>D)<br>D)<br>D)<br>D)<br>D)<br>D)                                                                                                                                                                                                                                                    | $\begin{array}{cccc} 5 & (38) \\ 1 & (13) \\ 1 & (2) \\ 2 & (1) \\ 0 & (0) \\ 8 & (13) \\ 2 & (3) \\ 2 & (22) \\ 5 & (5) \\ 0 & (0) \\ 5 & (24) \\ 0 & (0) \\ 0 & (0) \\ 1 & (6) \\ 12 & (20) \\ 0 & (0) \\ 11 & (6) \\ 12 & (20) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 2 & (15) \\ 2 & (15) \end{array}$                                                                                                                              | 1         (8)           0         (0)           2         (4)           1         (1)           0         (0)           2         (3)           5         (7)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           1         (1)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (1)           0         (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           1         (2)           0         (0)           0         (0)           1         (2)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)                                                       | 1<br>0<br>0<br>3<br>0<br>1<br>1<br>1<br>3<br>0<br>0<br>1<br>2<br>3<br>2<br>0<br>0<br>0<br>3<br>2<br>1                               | (8)<br>(0)<br>(2)<br>(0)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                                                                        | 0 (0)<br>0 (0)<br>11 (24)<br>7 (5)<br>0 (0)<br>11 (17)<br>2 (13)<br>0 (0)<br>11 (17)<br>2 (13)<br>0 (0)<br>1 (4)<br>4 (19)<br>0 (0)<br>1 (4)<br>4 (19)<br>0 (0)<br>1 (6)<br>2 (13)<br>1 (2)<br>1 (6)<br>0 (0)<br>5 (5)<br>1 (6)<br>2 (13)<br>1 (2)<br>1 (6)<br>0 (0)<br>5 (11)<br>0 (0)<br>5 (11)<br>0 (0)<br>5 (11)<br>0 (0)<br>5 (11)<br>0 (0)<br>5 (11)<br>0 (0)<br>5 (11)<br>1 (2)<br>1 (2) | $\begin{array}{c} 0 & (0) \\ 1 & (13) \\ 2 & (4) \\ 4 & (3) \\ 0 & (0) \\ 1 & (2) \\ 1 & (1) \\ 0 & (0) \\ 1 & (2) \\ 1 & (1) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 1 & (7) \\ 0 & (0) \\ 0 & (0) \\ 1 & (7) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) \\ 0 & (0) $ | 4         (31)           4         (50)           20         (43)           43         (31)           8         (35)           7         (11)           16         (22)           1         (11)           23         (25)           22         (88)           6         (29)           0         (0)           15         (18)           2         (8)           10         (59)           9         (64)           2         (40)           9         (17)           9         (5)           1         (8)                                                                                                                               | 0 (0)<br>0 (0)<br>4 (9)<br>3 (2)<br>0 (0)<br>8 (13)<br>1 (1)<br>0 (0)<br>0 (0)<br>1 (4)<br>0 (0)<br>0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 (0<br>0 (0)<br>0 (0<br>0 (0)<br>0 (0)    | )         13         (1.3)           )         8         (0.8)           )         138         (1.3.6)           )         138         (2.3)           )         138         (2.3)           )         63         (6.2)           )         72         (7.1)           )         9         (0.9)           )         25         (2.5)           )         21         (2.1)           )         5         (0.5)           )         32         (3.2)           )         660         (5.9)           )         14         (1.4)           )         5         (0.5)           )         14         (1.4)           )         5         (0.5)           )         14         (1.4)           )         5         (0.5)           )         14         (1.8)           )         185         (18.2)           )         13         (1.3) |
| X         1         (0)         1         (0)         187         (89)         0         (0)         3         (1)         4         (2)         3         (1)         0         (0)         1         (6)         2         (1)         (1)         (2)         (3)         1         (0)         0         (0)         0         (0)         0         (0)         1         (5)         0         (0)         1         (5)         0         (0)         1         (5)         0         (0)         1         (5)         0         (0)         1         (5)         0         (0)         1         (5)         0         (0)         1         (5)         0         (0)         1         (5)         0         (0)         1         (5)         0         (0)         1         (5)         0         (0)         1         (5)         0         (0)         1         (5)         0         (0)         1         (5)         0         (0)         1         (5)         0         (1)         1         (5)         1         (1)         (1)         (1)         (1)         (2)         (2)         1         (1)         (2)         (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | В<br>С<br>D<br>E<br>F<br>F<br>J<br>J<br>K<br>L<br>J<br>K<br>M<br>M<br>0<br>0<br>0<br>0<br>2<br>Q<br>Q<br>Q<br>2<br>5<br>5<br>7<br>7<br>7<br>7 | 0<br>0<br>2<br>0<br>0<br>5<br>4<br>4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | (0)<br>(5)<br>(0)<br>(7)<br>(4)<br>(4)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0                                             | 1         (6)           1         (6)           0         (1)           4         (6)           1         (4)           2         (2)           0         (1)           0         (1)           1         (4)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)           0         (1)                                                                                                     | a)       b)       b)       c)       c) <th>1         (9)           5         (24)           5         (13)           36         (37)           5         (20)           1         (11)           21         (22)           0         (0)           1         (15)           1         (20)           89         (78)           19         (49)           19         (17)           0         (0)           1         (10)           0         (0)           19         (17)           0         (0)           19         (17)           0         (0)           10         (10)           22         (39)           4         (50)           187         (89)           14         (51)</th> <th><math display="block">\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ (0) \\ 2 \\ (1) \\ 0 \\ (1) \\ 0 \\ (1) \\ 0 \\ (1) \\ 0 \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\</math></th> <th>D)<br/>D)<br/>D)<br/>D)<br/>D)<br/>D)<br/>D)<br/>D)<br/>D)<br/>D)</th> <th>2 (18)<br/>1 (5)<br/>1 (3)<br/>6 (6)<br/>4 (16)<br/>19 (26)<br/>5 (5)<br/>1 (5)<br/>1 (5)<br/>0 (0)<br/>17 (15)<br/>0 (0)<br/>1 (5)<br/>0 (0)<br/>2 (6)<br/>2 (9)<br/>30 (27)<br/>0 (0)<br/>1 (26)<br/>9 (18)<br/>0 (0)<br/>3 (11)<br/>3 (16)</th> <th>0 (0)<br/>0 (0)<br/>2 (5)<br/>3 (3)<br/>0 (0)<br/>1 (11)<br/>2 (22)<br/>1 (50)<br/>1 (12)<br/>3 (10)<br/>3 (15)<br/>1 (20)<br/>1 (11)<br/>3 (10)<br/>3 (15)<br/>1 (20)<br/>1 (11)<br/>0 (0)<br/>0 (0)<br/>0 (0)<br/>2 (4)<br/>0 (0)<br/>0 (0)<br/>0 (0)<br/>2 (4)<br/>0 (0)<br/>0 (0</th> <th>0         (0)           0         (0)           3         (3)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           3         (1)           0         (0)</th> <th>0<br/>0<br/>2<br/>1<br/>2<br/>0<br/>1<br/>0<br/>5<br/>2<br/>0<br/>0<br/>2<br/>0<br/>0<br/>2<br/>0<br/>1<br/>1<br/>3<br/>3<br/>1<br/>0<br/>0<br/>0<br/>0<br/>1</th> <th>(0)<br/>(0)<br/>(5)<br/>(1)<br/>(8)<br/>(1)<br/>(0)<br/>(1)<br/>(7)<br/>(0)<br/>(2)<br/>(0)<br/>(2)<br/>(2)<br/>(2)<br/>(2)<br/>(2)<br/>(1)<br/>(20)<br/>(1)<br/>(10)<br/>(0)<br/>(0)<br/>(0)<br/>(0)<br/>(5)</th> <th>1         (9)           4         (19)           5         (13)           6         (6)           0         (0)           16         (22)           9         (2)           0         (0)           6         (5)           2         (7)           4         (20)           0         (0)           0         (0)           4         (20)           9         (8)           0         (0)           0         (0)           0         (0)           3         (6)           3         (38)           1         (0)           0         (0)</th> <th><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></th> <th>3         (27)           8         (38)           15         (38)           23         (24)           9         (13)           20         (21)           0         (0)           17         (15)           22         (73)           6         (30)           1         (20)           17         (15)           6         (30)           1         (20)           1         (20)           1         (20)           1         (20)           2         (73)           6         (33)           7         (47)           2         (50)           9         (18)           1         (13)           6         (3)           7         (37)</th> <th><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></th> <th>1         (9)           0         (0)           1         (3)           8         (9)           5         (20)           9         (13)           7         (7)           0         (0)           2         (2)           1         (13)           1         (11)           5         (22)           11         (10)           5         (22)           11         (10)           1         (11)           6         (22)           11         (10)           1         (11)           1         (10)           1         (11)           1         (11)           1         (10)           0         (0)           0         (0)           1         (22)           11         (10)           1         (23)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)</th> <th>1         (9)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           1         (7)           0         (0)           0         (0)           0         (0)           0         (0)           1         (2)           2         (0)           0         (0)           0         (0)           0         (0)</th> <th>21         (14,8)           40         (3.5)           94         (8.2)           25         (2.2)           72         (6.3)           9         (6.2)           172         (6.3)           9         (6.3)           9         (72)           10         (20)           117         (10.2)           30         (2.6)           22         (17)           5         (0.4)           114         (9.9)           323         (2.0)           112         (17)           15         (1.4)           115         (1.3)           10         (0.3)           14         (0.3)           15         (4.4)           8         (0.7)           209         (18.2)           19         (1.7)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         (9)           5         (24)           5         (13)           36         (37)           5         (20)           1         (11)           21         (22)           0         (0)           1         (15)           1         (20)           89         (78)           19         (49)           19         (17)           0         (0)           1         (10)           0         (0)           19         (17)           0         (0)           19         (17)           0         (0)           10         (10)           22         (39)           4         (50)           187         (89)           14         (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ (0) \\ 2 \\ (1) \\ 0 \\ (1) \\ 0 \\ (1) \\ 0 \\ (1) \\ 0 \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\$ | D)<br>D)<br>D)<br>D)<br>D)<br>D)<br>D)<br>D)<br>D)<br>D)                                                                                                                                                                                                                                                    | 2 (18)<br>1 (5)<br>1 (3)<br>6 (6)<br>4 (16)<br>19 (26)<br>5 (5)<br>1 (5)<br>1 (5)<br>0 (0)<br>17 (15)<br>0 (0)<br>1 (5)<br>0 (0)<br>2 (6)<br>2 (9)<br>30 (27)<br>0 (0)<br>1 (26)<br>9 (18)<br>0 (0)<br>3 (11)<br>3 (16)                                                                                                                                                                                                                                               | 0 (0)<br>0 (0)<br>2 (5)<br>3 (3)<br>0 (0)<br>1 (11)<br>2 (22)<br>1 (50)<br>1 (12)<br>3 (10)<br>3 (15)<br>1 (20)<br>1 (11)<br>3 (10)<br>3 (15)<br>1 (20)<br>1 (11)<br>0 (0)<br>0 (0)<br>0 (0)<br>2 (4)<br>0 (0)<br>0 (0)<br>0 (0)<br>2 (4)<br>0 (0)<br>0 (0 | 0         (0)           0         (0)           3         (3)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           3         (1)           0         (0)                               | 0<br>0<br>2<br>1<br>2<br>0<br>1<br>0<br>5<br>2<br>0<br>0<br>2<br>0<br>0<br>2<br>0<br>1<br>1<br>3<br>3<br>1<br>0<br>0<br>0<br>0<br>1 | (0)<br>(0)<br>(5)<br>(1)<br>(8)<br>(1)<br>(0)<br>(1)<br>(7)<br>(0)<br>(2)<br>(0)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(1)<br>(20)<br>(1)<br>(10)<br>(0)<br>(0)<br>(0)<br>(0)<br>(5) | 1         (9)           4         (19)           5         (13)           6         (6)           0         (0)           16         (22)           9         (2)           0         (0)           6         (5)           2         (7)           4         (20)           0         (0)           0         (0)           4         (20)           9         (8)           0         (0)           0         (0)           0         (0)           3         (6)           3         (38)           1         (0)           0         (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3         (27)           8         (38)           15         (38)           23         (24)           9         (13)           20         (21)           0         (0)           17         (15)           22         (73)           6         (30)           1         (20)           17         (15)           6         (30)           1         (20)           1         (20)           1         (20)           1         (20)           2         (73)           6         (33)           7         (47)           2         (50)           9         (18)           1         (13)           6         (3)           7         (37) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1         (9)           0         (0)           1         (3)           8         (9)           5         (20)           9         (13)           7         (7)           0         (0)           2         (2)           1         (13)           1         (11)           5         (22)           11         (10)           5         (22)           11         (10)           1         (11)           6         (22)           11         (10)           1         (11)           1         (10)           1         (11)           1         (11)           1         (10)           0         (0)           0         (0)           1         (22)           11         (10)           1         (23)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1         (9)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           0         (0)           1         (7)           0         (0)           0         (0)           0         (0)           0         (0)           1         (2)           2         (0)           0         (0)           0         (0)           0         (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21         (14,8)           40         (3.5)           94         (8.2)           25         (2.2)           72         (6.3)           9         (6.2)           172         (6.3)           9         (6.3)           9         (72)           10         (20)           117         (10.2)           30         (2.6)           22         (17)           5         (0.4)           114         (9.9)           323         (2.0)           112         (17)           15         (1.4)           115         (1.3)           10         (0.3)           14         (0.3)           15         (4.4)           8         (0.7)           209         (18.2)           19         (1.7)                                                                                                                                             |

PICANet National Report 2004 - 2006

| Table 22 Admissions by primary diagnostic group (unplanned - othe | n) h | v NHS trust 2004 - 200 | 6 |
|-------------------------------------------------------------------|------|------------------------|---|
|                                                                   |      |                        |   |

| Table 2 | 2 Admissions | by primary dia    | ignostic   | group (unplanned   | 1 - otner) b | y NHS trust    | , 2004 - 2    | 2006                       |              |                  |             | Diagnostic G         | oup     |            |                        |                        |                        |                     |                    |                     |                     |                   | 1                       |
|---------|--------------|-------------------|------------|--------------------|--------------|----------------|---------------|----------------------------|--------------|------------------|-------------|----------------------|---------|------------|------------------------|------------------------|------------------------|---------------------|--------------------|---------------------|---------------------|-------------------|-------------------------|
| Year    | NHS Trust    | Blood / lymp<br>n | hatic<br>% | Body wall and on n | avities<br>% | Cardiovas<br>n | scular<br>%   | Endocrine / metabol<br>n % | lic          | Gastrointe:<br>n |             | Infection<br>n %     | Multisy | stem<br>%  | Musculoskeletal<br>n % | Neuro<br>n             | ological Oncolo<br>% n | ogy Res<br>% n      | spiratory<br>%     | Trauma<br>n %       | Other<br>n %        | Unknown<br>n %    | Total<br>n %            |
| 2004    | A            | 3                 | (1)        | 3                  | (1)          | 11             | (4)<br>(5)    | 10                         | (4)          | 20               | (8)         | 24 (10)              | 0       | (0)        | 1 (0                   | ) 55                   | (22) 21                | (9) 5               | 55 (22)            | 26 (11)             | 18 (7)              | 0 (0)             | 247 (3.3)               |
|         | B<br>C       | 1                 | (1)        | 1                  | (1) (2)      | 8              | (5)<br>(4)    | 8                          | (5)<br>(2)   | 9<br>4           | (6)<br>(2)  | 8 (5)<br>16 (9)      | 0       | (0) (1)    | 0 (0 0                 | ) 34                   | (23) 1                 | (.) -               | 62 (42)<br>66 (39) | 8 (5)<br>18 (11)    | 6 (4)               | 0 (0)             | 146 (2.0)<br>169 (2.3)  |
|         | D            | 4                 | (1)        | 3                  | (1)          | 21             | (4)           | 11                         | (3)          | 9                | (2)         | 39 (9)               | 0       | (0)        | 3 (1                   |                        |                        | (2) 18              |                    | 45 (11)             | 14 (3)              | 0 (0)             | 415 (5.6)               |
|         | E            | 4                 | (0)<br>(0) | 22<br>5            | (2)<br>(1)   | 218<br>153     | (23)<br>(24)  | 37<br>16                   | (4)<br>(2)   | 70<br>5          | (7)<br>(1)  | 39 (4)<br>59 (9)     | 3       | (0)<br>(0) | 4 (0<br>2 (0           |                        |                        | (2) 32<br>(0) 24    | 24 (34)<br>41 (37) | 55 (6)<br>17 (3)    | 38 (4)<br>21 (3)    | 0 (0)<br>5 (1)    | 945 (12.7)<br>650 (8.7) |
|         | G            | 0                 | (0)        | 0                  | (0)          | 1              | (24)          | 2                          | (5)          | 2                | (5)         | 8 (20)               | 0       | (0)        | 0 (0                   |                        |                        |                     | 9 (22)             | 1 (2)               | 5 (12)              | 0 (0)             | 41 (0.5)                |
|         | H            | 4                 | (3)        | 1                  | (1)          | 9              | (6)           | 5                          | (3)          | 15               | (10)        | 2 (1)                | 0       | (0)        | 0 (0                   | ) 39                   | (25) 1                 | (1) 3               | 30 (19)            | 30 (19)             | 19 (12)             | 0 (0)             | 155 (2.1)               |
|         | J            | 2                 | (0)<br>(0) | 0                  | (0)<br>(0)   | 36<br>2        | (9)<br>(4)    | 13<br>5                    | (3)<br>(11)  | 11<br>5          | (3)<br>(11) | 27 (7)<br>1 (2)      | 0       | (0)<br>(0) | 1 (0 0 (0              | ) 61                   | (15) 3<br>(22) 0       | (1) 17<br>(0) 1     | 78 (44)<br>16 (36) | 34 (8)<br>0 (0)     | 39 (10)<br>6 (13)   | 4 (1)<br>0 (0)    | 409 (5.5)<br>45 (0.6)   |
|         | к            | 2                 | (1)        | 29                 | (7)          | 54             | (14)          | 7                          | (2)          | 32               | (8)         | 21 (5)               | 0       | (0)        | 3 (1                   | ) 36                   | (9) 3                  | (1) 15              | 52 (38)            | 35 (9)              | 23 (6)              | 0 (0)             | 397 (5.3)               |
|         | M            | 1                 | (1)        | 0                  | (0)          | 9              | (6)<br>(4)    | 5<br>10                    | (3)<br>(5)   | 3<br>5           | (2)         | 6 (4)<br>23 (11)     | 0       | (0)        | 0 (0 0 0               |                        |                        |                     | 92 (59)<br>97 (45) | 2 (1)<br>18 (8)     | 7 (4)<br>7 (3)      | 1 (1)<br>0 (0)    | 157 (2.1)<br>214 (2.9)  |
|         | N            | 0                 | (0)        | 3                  | (2)          | 20             | (12)          | 4                          | (2)          | 2                | (1)         | 7 (4)                | 0       | (0)        | 0 (0                   | ) 32                   | (19) 0                 | (0) 8               | 89 (52)            | 12 (7)              | 2 (1)               | 0 (0)             | 171 (2.3)               |
|         | O<br>P       | 0                 | (0)<br>(0) | 0<br>21            | (0) (4)      | 85<br>75       | (75)<br>(16)  | 0                          | (0)<br>(1)   | 1<br>21          | (1)<br>(4)  | 2 (2)<br>29 (6)      | 0       | (0)<br>(0) | 3 (3<br>2 (0           |                        |                        | (0) 2<br>(2) 19     | 20 (18)<br>98 (42) | 1 (1)<br>27 (6)     | 0 (0)               | 1 (1)<br>1 (0)    | 114 (1.5)<br>473 (6.3)  |
|         | Q            | 3                 | (1)        | 11                 | (3)          | 11             | (3)           | 7                          | (2)          | 19               | (5)         | 33 (9)               | 0       | (0)        | 0 (0                   | ) 48                   | (14) 3                 | (1) 17              | 71 (49)            | 25 (7)              | 16 (5)              | 2 (1)             | 349 (4.7)               |
|         | R            | 0                 | (0)<br>(0) | 2                  | (1)          | 42             | (14)          | 5                          | (2)<br>(6)   | 25<br>0          | (8)<br>(0)  | 20 (7)<br>5 (4)      | 0       | (0)        | 2 (1<br>1 (1           |                        | (21) 4<br>(23) 0       | (1) 10<br>(0) 6     | 08 (36)<br>62 (54) | 20 (7)<br>8 (7)     | 10 (3)<br>4 (3)     | 0 (0)             | 302 (4.0)<br>115 (1.5)  |
|         | T            | 4                 | (2)        | 1                  | (1)          | 7              | (4)           | 3                          | (2)          | 6                | (3)         | 17 (9)               | 0       | (0)        | 0 (0                   | ) 19                   | (10) 31                | (16) 8              | 83 (42)            | 18 (9)              | 9 (5)               | 0 (0)             | 198 (2.7)               |
|         | U            | 9                 | (3)        | 1                  | (0)<br>(3)   | 6<br>92        | (2)<br>(17)   | 18<br>24                   | (5)<br>(4)   | 1<br>40          | (0)<br>(7)  | 44 (13)<br>27 (5)    | 0       | (0)        | 0 (0 5 (1              |                        |                        | (0) 15<br>(1) 17    |                    | 3 (1)<br>52 (10)    | 12 (3)<br>16 (3)    | 15 (4)<br>1 (0)   | 348 (4.7)<br>538 (7.2)  |
|         | Ŵ            | 2                 | (1)        | 5                  | (1)          | 76             | (20)          | 10                         | (3)          | 10               | (3)         | 18 (5)               | 0       | (0)        | 0 (0                   | ) 90                   | (23) 6                 | (2) 14              | 49 (39)            | 1 (0)               | 18 (5)              | 0 (0)             | 385 (5.2)               |
|         | X            | 4                 | (1)        | 9                  | (2)          | 113            | (24)          | 7                          | (2)          | 23               | (5)<br>(0)  | 28 (6)<br>4 (21)     | 2       | (0)        | 1 (0                   |                        |                        | (2) 16              | 63 (35)<br>11 (58) | 15 (3)<br>0 (0)     | 20 (4)              | 0 (0)             | 465 (6.2)<br>19 (0.3)   |
| 2004 To | otal         | 55                | (0.7)      | 136                | (1.8)        | -              | (14.3)        | -                          | (3.0)        | 338              | (4.5)       |                      | 10      | (0.1)      |                        | ) 1,254                |                        |                     |                    | 471 (6.3)           | ÷ (•)               | ÷ (*)             | 7,467                   |
| 2005    | A            | 6                 | (2)        | 3                  | (1)          | 5              | (2)           | 12                         | (5)          | 17               | (7)         | 12 (5)               | 2       | (1)        | 3 (1                   | ) 57                   | (23) 14                | (6) 7               | 71 (29)            | 26 (11)             | 16 (7)              | 1 (0)             | 245 (3.2)               |
|         | B<br>C       | 0                 | (0)<br>(2) | 3<br>0             | (2)          | 3              | (2)<br>(4)    | 5<br>4                     | (4)<br>(2)   | 7                | (6)<br>(1)  | 14 (11)<br>31 (18)   | 0       | (0)<br>(1) | 0 (0                   |                        |                        |                     | 53 (42)<br>75 (43) | 6 (5)<br>19 (11)    | 3 (2)<br>6 (3)      | 0 (0)             | 127 (1.7)<br>175 (2.3)  |
|         | D            | 6                 | (2)        | 1                  | (0)          | 30             | (4)           | 10                         | (3)          | 3                | (1)         | 38 (10)              | 0       | (0)        | 6 (2                   |                        |                        | (1) 7<br>(3) 13     |                    | 38 (10)             | 16 (4)              | 0 (0)             | 370 (4.8)               |
|         | E            | 7                 | (1)        | 27                 | (3)          | 151            | (18)          | 31                         | (4)          | 57               | (7)         | 48 (6)               | 1       | (0)        | 5 (1                   | ) 130                  |                        | (2) 27              | 77 (33)            | 61 (7)              | 36 (4)<br>24 (4)    | 0 (0)             | 849 (11.1)              |
|         | F<br>G       | 0                 | (0)<br>(0) | 5                  | (1)<br>(0)   | 161<br>2       | (25)<br>(4)   | 19<br>0                    | (3)<br>(0)   | 4                | (1)<br>(4)  | 44 (7)<br>8 (17)     | 0       | (0)<br>(0) | 1 (0                   |                        |                        | (0) 24<br>(0)       | 43 (37)<br>6 (13)  | 18 (3)<br>4 (9)     | 24 (4)<br>1 (2)     | 5 (1)<br>0 (0)    | 655 (8.6)<br>46 (0.6)   |
|         | н            | 1                 | (1)        | 0                  | (0)          | 0              | (0)           | 8                          | (5)          | 18               | (12)        | 6 (4)                | 0       | (0)        | 1 (1                   | ) 42                   | (28) 2                 | (1) 3               | 34 (23)            | 14 (9)              | 21 (14)             | 1 (1)             | 148 (1.9)               |
|         | J            | 3                 | (1)<br>(2) | 0                  | (0)<br>(0)   | 55<br>2        | (14)<br>(4)   | 14                         | (4)<br>(2)   | 5                | (1)<br>(2)  | 43 (11)<br>1 (2)     | 0       | (0)        | 0 (0 0 0               |                        | (15) 8<br>(33) 1       | (2) 13<br>(2) 2     | 31 (34)<br>23 (48) | 29 (8)<br>1 (2)     | 33 (9)<br>1 (2)     | 3 (1)<br>0 (0)    | 382 (5.0)<br>48 (0.6)   |
|         | к            | 6                 | (2)        | 18                 | (5)          | 83             | (21)          | 12                         | (3)          | 47               | (12)        | 32 (8)               | 0       | (0)        | 2 (1                   | ) 53                   | (13) 8                 | (2) 10              | 07 (27)            | 15 (4)              | 17 (4)              | 0 (0)             | 400 (5.2)               |
|         | M            | 3                 | (1)        | 3                  | (1)          | 5              | (2)<br>(2)    | 7                          | (3)<br>(4)   | 3                | (1)<br>(3)  | 15 (7)<br>41 (20)    | 0       | (0)<br>(0) | 2 (1<br>2 (1           |                        |                        | (0) 10<br>(2) 7     | 01 (49)<br>70 (34) | 5 (2)<br>16 (8)     | 7 (3)<br>10 (5)     | 0 (0)             | 206 (2.7)<br>207 (2.7)  |
|         | N            | 0                 | (0)        | 2                  | (1)          | 24             | (17)          | 8                          | (6)          | 1                | (1)         | 10 (7)               | 0       | (0)        | 0 (0                   | ) 33                   | (23) 0                 | (0) 4               | 44 (31)            | 16 (11)             | 3 (2)               | 0 (0)             | 141 (1.8)               |
|         | 0<br>P       | 0                 | (0)        | 1                  | (1) (2)      | 90<br>95       | (67)<br>(19)  | 0<br>14                    | (0)<br>(3)   | 1<br>12          | (1)<br>(2)  | 3 (2)<br>43 (9)      | 0       | (0)        | 1 (1<br>1 (0           |                        | (.) •                  | (0) 2<br>(3) 15     | 24 (18)<br>58 (32) | 0 (0) 42 (9)        | 3 (2)<br>18 (4)     | 10 (7)<br>2 (0)   | 135 (1.8)<br>490 (6.4)  |
|         | Q            | 4                 | (1)        | 17                 | (4)          | 8              | (2)           | 21                         | (5)          | 27               | (7)         | 33 (9)               | 0       | (0)        | 5 (1                   | ) 64                   | (17) 16                | (4) 14              | 49 (39)            | 23 (6)              | 15 (4)              | 1 (0)             | 383 (5.0)               |
|         | R<br>S       | 1                 | (0)<br>(0) | 2                  | (1)          | 48             | (14)<br>(3)   | 3<br>13                    | (1)<br>(10)  | 36<br>1          | (11)        | 21 (6)<br>2 (2)      | 0       | (0)<br>(0) | 0 (0 0                 | ) 72                   | (21) 8<br>(14) 0       |                     | 13 (33)<br>76 (61) | 22 (7)<br>8 (6)     | 12 (4)<br>4 (3)     | 0 (0)             | 338 (4.4)<br>125 (1.6)  |
|         | т            | 3                 | (1)        | 0                  | (0)          | 6              | (3)           | 7                          | (3)          | 9                | (4)         | 9 (4)                | 0       | (0)        | 0 (0                   |                        | (22) 20                |                     | 97 (46)            | 13 (6)              | 2 (1)               | 0 (0)             | 213 (2.8)               |
|         | U<br>V       | 10                | (3)        | 0                  | (0) (3)      | 11             | (3) (16)      | 12<br>27                   | (3)          | 4                | (1)<br>(10) | 43 (11)<br>9 (2)     | 0       | (0)<br>(0) | 0 (0 2 (0              |                        | (22) 0<br>(10) 7       | (0) 18<br>(1) 10    |                    | 3 (1)<br>58 (12)    | 16 (4)<br>18 (4)    | 8 (2)<br>59 (12)  | 380 (5.0)<br>479 (6.3)  |
|         | w            | 2                 | (0)        | 15<br>0            | (0)          | 76<br>82       | (20)          | 11                         | (6)<br>(3)   | 49<br>8          | (10)        | 34 (8)               | 0       | (0)        | 2 (0<br>2 (0           |                        |                        | (2) 15              |                    | 4 (1)               | 12 (3)              | 59 (12)<br>3 (1)  | 406 (5.3)               |
|         | X            | 6                 | (1)        | 13                 | (3)<br>(2)   | 119<br>14      | (24)<br>(7)   | 9                          | (2)<br>(4)   | 22               | (4)<br>(3)  | 33 (7)<br>20 (10)    | 4       | (1)        | 1 (0 0 (0              |                        |                        | (3) 17<br>(2) 6     | 71 (35)<br>67 (34) | 25 (5)<br>20 (10)   | 18 (4)<br>16 (8)    | 1 (0)             | 492 (6.4)<br>195 (2.6)  |
| 2005 To | otal         | 72                | (0.9)      | 124                | (1.6)        | 1,085          | (14.2)        |                            | (3.5)        | 348              | (4.6)       | 593 (7.8)            | 14      | (0.2)      | 34 (0.4                |                        |                        | (2.1) 2,67          |                    | 486 (6.4)           |                     |                   | 7,635                   |
| 2006    | A            | 5                 | (2)        | 4                  | (2)          | 14             | (5)           | 11                         | (4)          | 14               | (5)         | 17 (7)               | 7       | (3)        | 4 (2                   | ) 54                   | (21) 23                | (9) 7               | 75 (29)            | 16 (6)              | 16 (6)              | 0 (0)             | 260 (3.4)               |
|         | B<br>C       | 1                 | (1)        | 1                  | (1)          | 5              | (5)           | 9                          | (8)          | 6                | (5)         | 5 (5)                | 2       | (2)        | 0 (0                   | ) 28                   | (25) 0                 |                     | 38 (35)            | 2 (2)               | 9 (8)               | 4 (4)             | 110 (1.5)               |
|         | D            | 0                 | (0)<br>(3) | 1                  | (1)          | 32             | (4)<br>(9)    | 9<br>14                    | (5)<br>(4)   | 3                | (2)         | 28 (15)<br>33 (9)    | 1       | (0)<br>(0) | 0 (0<br>3 (1           |                        | (16) 0<br>(17) 14      | (0) 7<br>(4) 13     | 78 (41)<br>35 (38) | 20 (11)<br>36 (10)  | 13 (7)<br>9 (3)     | 0 (0)<br>0 (0)    | 190 (2.5)<br>357 (4.7)  |
|         | E            | 12                | (1)        | 38                 | (4)          | 210            | (23)          | 48                         | (5)          | 64<br>9          | (7)         | 50 (5)               | 2       | (0)        | 4 (0                   | ) 103                  |                        | (2) 28              |                    | 48 (5)              | 45 (5)              | 0 (0)             | 929 (12.3)              |
|         | G            | 2                 | (0)        | 3                  | (0)          | 127<br>2       | (21)<br>(7)   | 20<br>0                    | (3)<br>(0)   | 0                | (1)         | 55 (9)<br>4 (14)     | 0       | (0)        | 0 (0                   |                        |                        | (0) 25<br>(0)       | 54 (42)<br>5 (18)  | 13 (2)<br>3 (11)    | 26 (4)<br>2 (7)     | 4 (1)<br>0 (0)    | 611 (8.1)<br>28 (0.4)   |
|         | H            | 1                 | (1)        | 0                  | (0)          | 2              | (2)           | 7                          | (6)          | 10               | (8)         | 12 (10)              | 0       | (0)        | 0 (0                   | ) 23                   | (19) 2                 | (2) 3               | 38 (31)            | 20 (16)             | 9 (7)               | 0 (0)             | 124 (1.6)               |
|         | J            | 7                 | (2)<br>(3) | 4                  | (1)<br>(0)   | 63<br>2        | (16)<br>(6)   | 18                         | (5)<br>(0)   | 19<br>4          | (5)<br>(11) | 35 (9)<br>2 (6)      | 1       | (0)<br>(0) | 2 (1<br>0 (0           | ) 46                   |                        |                     | 29 (34)<br>18 (50) | 25 (7)<br>1 (3)     | 26 (7)<br>2 (6)     | 3 (1)<br>0 (0)    | 384 (5.1)<br>36 (0.5)   |
|         | ĸ            | 6                 | (2)        | 15                 | (4)          | 78             | (20)          | 13                         | (3)          | 47               | (12)        | 41 (11)              | 2       | (1)        | 0 (0                   | ) 39                   | (10) 7                 | (2) 10              | 05 (28)            | 15 (4)              | 13 (3)              | 0 (0)             | 381 (5.0)               |
|         | M            | 0                 | (0)<br>(0) | 1                  | (0)          | 5<br>10        | (2)<br>(5)    | 15<br>19                   | (7)<br>(9)   | 2                | (1)<br>(4)  | 13 (6)<br>15 (7)     | 0       | (0)<br>(0) | 2 (1 0 (0              |                        | (25) 0<br>(24) 4       | (0) 10<br>(2) 7     | 02 (50)<br>71 (33) | 4 (2)<br>20 (9)     | 11 (5)              | 0 (0)             | 206 (2.7)<br>217 (2.9)  |
| 1       | N            | 1                 | (1)        | 2                  | (2)          | 18             | (15)          | 4                          | (3)          | 2                | (2)         | 9 (7)                | 0       | (0)        | 0 (0                   | ) 33                   | (27) 2                 | (2) 3               | 34 (28)            | 13 (11)             | 3 (2)               | 0 (0)             | 121 (1.6)               |
|         | O<br>P       | 0                 | (0)        | 0                  | (0)          | 66<br>109      | (57)<br>(20)  | 0                          | (0)          | 1                | (1)         | 7 (6)<br>44 (8)      | 0       | (0)        | 3 (3                   |                        |                        | (0) 1<br>(1) 18     | 19 (17)<br>89 (34) | 0 (0) 44 (8)        | 0 (0)               | 19 (17)<br>0 (0)  | 115 (1.5)<br>552 (7.3)  |
| 1       | Q            | 4                 | (1)        | 19                 | (6)          | 8              | (2)           | 13                         | (4)          | 30               | (9)         | 21 (6)               | 0       | (0)        | 4 (1                   | ) 67                   | (20) 9                 | (3) 13              | 30 (38)            | 21 (6)              | 13 (4)              | 0 (0)             | 339 (4.5)               |
| 1       | R            | 2                 | (1)<br>(0) | 3                  | (1)<br>(0)   | 46             | (17)<br>(4)   | 9                          | (3)          | 26<br>0          | (10)<br>(0) | 17 (6)<br>7 (5)      | 1       | (0)<br>(0) | 1 (0                   |                        |                        |                     | B3 (31)<br>70 (52) | 16 (6)<br>12 (9)    | 9 (3)               | 0 (0)             | 269 (3.6)<br>135 (1.8)  |
| 1       | T            | 1                 | (0)        | 0                  | (0)          | 6              | (4)           | 8<br>10                    | (6)<br>(4)   | 12               | (0)         | 26 (10)              | 0       | (0)        | 1 (1<br>2 (1           | ) 22<br>) 44           |                        | (0) 7<br>(7) 12     |                    | 12 (9)<br>9 (3)     | 10 (7)<br>5 (2)     | 0 (0)             | 263 (3.5)               |
|         | U            | 7                 | (2)        | 0<br>8             | (0)          | 22             | (7)           | 12                         | (4)          | 5                | (2)         | 31 (9)               | 0       | (0)        | 0 (0 3 (1              | ) 101                  |                        | (0) 13              |                    | 2 (1)               | 7 (2)               | 7 (2)             | 333 (4.4)               |
| 1       | w            | 6                 | (1)        | 4                  | (1)          | 125<br>79      | (21)          | 21<br>11                   | (4)<br>(3)   | 45<br>8          | (8)         | 27 (5)<br>34 (9)     | 0       | (0)        | 3 (1<br>1 (0           |                        |                        | (1) 21<br>(3) 9     | 18 (37)<br>96 (27) | 48 (8)<br>10 (3)    | 14 (2)<br>8 (2)     | 2 (0)<br>2 (1)    | 589 (7.8)<br>362 (4.8)  |
| 1       | X            | 3                 | (1)        | 16                 | (4)          | 112            | (25)          | 8                          | (2)          | 25               | (6)         | 29 (7)               | 1       | (0)        | 3 (1                   | ) 55                   | (12) 7                 | (2) 14              | 47 (33)            | 22 (5)              | 12 (3)              | 3 (1)             | 443 (5.9)               |
| 2006 To | tal          | 0<br>79           | (0)        | 2<br>136           | (1)<br>(1.8) | 9<br>1,163     | (5)<br>(15.4) | 2<br>296                   | (1)<br>(3.9) | 14<br>376        | (7)         | 24 (12)<br>586 (7.8) | 0<br>20 | (0)        | 1 (1<br>35 (0.5        | ) <u>31</u><br>) 1,266 | (16) 4<br>(16.8) 140 ( | (2) 8<br>(1.9) 2,67 |                    | 16 (8)<br>436 (5.8) | 10 (5)<br>300 (4.0) | 0 (0)<br>44 (0.6) | 194 (2.6)<br>7,548      |
| Grand 1 | Cotal        | 206               | (0.9)      | 396                | (1.7)        | 3,314          | (14.6)        | 783                        | (3.5)        | 1,062            |             | 1,686 (7.4)          | 44      | (0.2)      |                        |                        | (17.1) 426 (           |                     |                    |                     |                     |                   |                         |
| Sianu   | viai         | 206               | (0.9)      | 390                | (1.7)        | 3,314          | (14.0)        | 103                        | (3.3)        | 1,062            | (4.7)       | 1,000 (7.4)          | 44      | (0.2)      | 9/ (0.4                | 1 3,8/8                | (17.1) 426 (           | (1.9) 8,23          | JU (JD.4)          | 1,393 (0.2)         | <b>301 (4.2)</b>    | 100 (0.7)         | ZZ,000                  |

Table 23 Most commonly returned Read Codes for primary reason for admission, 2004 - 2006

| · · ·                                                              |       |        |       | Sex    | (     |       |      |       |        |       |
|--------------------------------------------------------------------|-------|--------|-------|--------|-------|-------|------|-------|--------|-------|
| Primary Diagnosis                                                  | Ma    | ale    | Fen   | nale   | Ambig | uous  | Unkn | own   | Tota   | al    |
|                                                                    | n     | %      | n     | %      | n     | %     | n    | %     | n      | %     |
| Ventricular septal defect (P54)                                    | 655   | (52)   | 606   | (48)   | 0     | (0)   | 3    | (0)   | 1,264  | (8.3) |
| Tetralogy of Fallot (P52)                                          | 549   | (57)   | 403   | (42)   | 0     | (0)   | 9    | (1)   | 961    | (6.3) |
| Discordant ventriculoarterial connection (P51)                     | 589   | (66)   | 296   | (33)   | 0     | (0)   | 1    | (0)   | 886    | (5.8) |
| Respiratory failure (XM09V)                                        | 490   | (57)   | 373   | (43)   | 0     | (0)   | 0    | (0)   | 863    | (5.7) |
| Status epilepticus (X007B)                                         | 467   | (56)   | 363   | (44)   | 0     | (0)   | 2    | (0)   | 832    | (5.4) |
| Acute bronchiolitis due to respiratory syncytial virus (H0615)     | 455   | (58)   | 329   | (42)   | 0     | (0)   | 0    | (0)   | 784    | (5.1) |
| Sepsis (X70VZ)                                                     | 374   | (53)   | 330   | (47)   | 0     | (0)   | 1    | (0)   | 705    | (4.6) |
| Patent ductus arteriosus (P70)                                     | 324   | (48)   | 352   | (52)   | 1     | (0)   | 1    | (0)   | 678    | (4.4) |
| Hypoplastic left heart syndrome (P67)                              | 441   | (65)   | 235   | (35)   | 0     | (0)   | 1    | (0)   | 677    | (4.4) |
| Atrial septal defect (X77vY)                                       | 261   | (42)   | 360   | (58)   | 0     | (0)   | 1    | (0)   | 622    | (4.1) |
| Atrioventricular septal defect & common atriovent junction (X77wc) | 308   | (50)   | 304   | (49)   | 0     | (0)   | 3    | (0)   | 615    | (4.0) |
| Injury of head region (XA003)                                      | 395   | (65)   | 211   | (35)   | 0     | (0)   | 0    | (0)   | 606    | (4.0) |
| Pneumonia (X100E)                                                  | 309   | (51)   | 293   | (49)   | 1     | (0)   | 0    | (0)   | 603    | (3.9) |
| Aortic coarctation (P71)                                           | 382   | (65)   | 203   | (35)   | 0     | (0)   | 1    | (0)   | 586    | (3.8) |
| Respiratory distress (XM07z)                                       | 356   | (62)   | 216   | (38)   | 0     | (0)   | 0    | (0)   | 572    | (3.7) |
| Meningococcal septicaemia (A362.)                                  | 305   | (55)   | 250   | (45)   | 0     | (0)   | 0    | (0)   | 555    | (3.6) |
| Acute bronchiolitis (H061.)                                        | 331   | (60)   | 220   | (40)   | 0     | (0)   | 0    | (0)   | 551    | (3.6) |
| Bronchiolitis (XSDOK)                                              | 300   | (58)   | 220   | (42)   | 0     | (0)   | 0    | (0)   | 520    | (3.4) |
| Acquired scoliosis (X70D3)                                         | 154   | (41)   | 222   | (59)   | 0     | (0)   | 1    | (0)   | 377    | (2.5) |
| Congenital heart disease (X77tW)                                   | 188   | (53)   | 166   | (47)   | 0     | (0)   | 0    | (0)   | 354    | (2.3) |
| Neonatal necrotising enterocolitis (Q464.)                         | 199   | (57)   | 148   | (42)   | 0     | (0)   | 2    | (1)   | 349    | (2.3) |
| Acute lower respiratory tract infection (XE0Xt)                    | 181   | (54)   | 155   | (46)   | 0     | (0)   | 0    | (0)   | 336    | (2.2) |
| Respiratory obstruction (XM05Q)                                    | 205   | (62)   | 128   | (38)   | 0     | (0)   | 0    | (0)   | 333    | (2.2) |
| Head injury NOS (XA004)                                            | 219   | (67)   | 107   | (33)   | 0     | (0)   | 0    | (0)   | 326    | (2.1) |
| Seizure (XaEHz)                                                    | 167   | (52)   | 152   | (48)   | 0     | (0)   | 0    | (0)   | 319    | (2.1) |
| Total                                                              | 8,604 | (56.3) | 6,642 | (43.5) | 2     | (0.0) | 26   | (0.2) | 15,274 |       |

| Table 24 Most commonly returned Read Codes for prim | ary reason for 'unplanned - following surgery' admissior | ıs, 2004 - 2006 |
|-----------------------------------------------------|----------------------------------------------------------|-----------------|
|                                                     | Carr                                                     |                 |

|                                                |     |        |     | -      | ex    |       |      |       |     |      |
|------------------------------------------------|-----|--------|-----|--------|-------|-------|------|-------|-----|------|
| Primary Diagnosis                              | N   | lale   | Fe  | male   | Ambig | uous  | Unkr | lown  | Тс  | otal |
|                                                | n   | %      | n   | %      | n     | %     | n    | %     | n   | %    |
| Respiratory obstruction (XM05Q)                | 34  | (67)   | 17  | (33)   | 0     | (0)   | 0    | (0)   | 51  | (7.  |
| Patent ductus arteriosus (P70)                 | 24  | (48)   | 26  | (52)   | 0     | (0)   | 0    | (0)   | 50  | (7.  |
| Empyema (XaE01)                                | 26  | (57)   | 20  | (43)   | 0     | (0)   | 0    | (0)   | 46  | (6.  |
| Intussusception (J500.)                        | 17  | (45)   | 21  | (55)   | 0     | (0)   | 0    | (0)   | 38  | (5.  |
| Sepsis (X70VZ)                                 | 21  | (58)   | 15  | (42)   | 0     | (0)   | 0    | (0)   | 36  | (5.  |
| Hypoplastic left heart syndrome (P67)          | 26  | (76)   | 8   | (24)   | 0     | (0)   | 0    | (0)   | 34  | (5.  |
| Neonatal necrotising enterocolitis (Q464.)     | 16  | (52)   | 14  | (45)   | 0     | (0)   | 1    | (3)   | 31  | (4.  |
| Respiratory failure (XM09V)                    | 22  | (71)   | 9   | (29)   | 0     | (0)   | 0    | (0)   | 31  | (4.  |
| Ventricular septal defect (P54)                | 17  | (57)   | 13  | (43)   | 0     | (0)   | 0    | (0)   | 30  | (4.  |
| Respiratory distress (XM07z)                   | 16  | (55)   | 13  | (45)   | 0     | (0)   | 0    | (0)   | 29  | (4.  |
| Stridor (XM082)                                | 14  | (56)   | 11  | (44)   | 0     | (0)   | 0    | (0)   | 25  | (3.  |
| Discordant ventriculoarterial connection (P51) | 20  | (83)   | 4   | (17)   | 0     | (0)   | 0    | (0)   | 24  | (3.  |
| Hydrocephalus (X00EG)                          | 13  | (54)   | 11  | (46)   | 0     | (0)   | 0    | (0)   | 24  | (3.  |
| Gastro-oesophageal reflux disease (X3003)      | 9   | (39)   | 14  | (61)   | 0     | (0)   | 0    | (0)   | 23  | (3.  |
| Injury of head region (XA003)                  | 13  | (59)   | 9   | (41)   | 0     | (0)   | 0    | (0)   | 22  | (3.  |
| Intracranial tumour (X78ZI)                    | 10  | (50)   | 10  | (50)   | 0     | (0)   | 0    | (0)   | 20  | (3.  |
| Obstruction of intestine (X305B)               | 11  | (55)   | 9   | (45)   | 0     | (0)   | 0    | (0)   | 20  | (3.  |
| Bleeding from tonsillar bed (X76bB)            | 10  | (50)   | 10  | (50)   | 0     | (0)   | 0    | (0)   | 20  | (3.  |
| Peritonitis (J55)                              | 12  | (63)   | 7   | (37)   | 0     | (0)   | 0    | (0)   | 19  | (2.  |
| Cardiac arrest (XE0V5)                         | 11  | (61)   | 7   | (39)   | 0     | (0)   | 0    | (0)   | 18  | (2.  |
| Congenital heart disease (X77tW)               | 9   | (50)   | 9   | (50)   | 0     | (0)   | 0    | (0)   | 18  | (2.  |
| Head injury NOS (XA004)                        | 14  | (82)   | 3   | (18)   | 0     | (0)   | 0    | (0)   | 17  | (2.  |
| Malrotation of intestine (X305T)               | 10  | (59)   | 7   | (41)   | 0     | (0)   | 0    | (0)   | 17  | (2.  |
| Apnoea (X76Gw)                                 | 12  | (75)   | 4   | (25)   | 0     | (0)   | 0    | (0)   | 16  | (2.  |
| Appendicitis (Xa9C4)                           | 9   | (56)   | 7   | (44)   | 0     | (0)   | 0    | (0)   | 16  | (2.  |
| Total                                          | 396 | (58.7) | 278 | (41.2) | 0     | (0.0) | 1    | (0.1) | 675 | 1    |

Table 25 Most commonly returned Read Codes for primary reason for 'unplanned - other' admission, 2004 - 2006

|                                                                |       |        |       | Se     | x     |       |      |       |       |       |
|----------------------------------------------------------------|-------|--------|-------|--------|-------|-------|------|-------|-------|-------|
| Primary Diagnosis                                              | Ma    | ale    | Fen   | nale   | Ambig | uous  | Unkn | own   | Tot   | al    |
|                                                                | n     | %      | n     | %      | n     | %     | n    | %     | n     | %     |
| Status epilepticus (X007B)                                     | 450   | (56)   | 354   | (44)   | 0     | (0)   | 2    | (0)   | 806   | (8.2) |
| Respiratory failure (XM09V)                                    | 445   | (57)   | 338   | (43)   | 0     | (0)   | 0    | (0)   | 783   | (7.9) |
| Acute bronchiolitis due to respiratory syncytial virus (H0615) | 435   | (58)   | 315   | (42)   | 0     | (0)   | 0    | (0)   | 750   | (7.6) |
| Sepsis (X70VZ)                                                 | 340   | (54)   | 289   | (46)   | 0     | (0)   | 1    | (0)   | 630   | (6.4) |
| Pneumonia (X100E)                                              | 292   | (52)   | 270   | (48)   | 0     | (0)   | 0    | (0)   | 562   | (5.7) |
| Injury of head region (XA003)                                  | 368   | (66)   | 193   | (34)   | 0     | (0)   | 0    | (0)   | 561   | (5.7) |
| Meningococcal septicaemia (A362.)                              | 299   | (56)   | 237   | (44)   | 0     | (0)   | 0    | (0)   | 536   | (5.4) |
| Acute bronchiolitis (H061.)                                    | 322   | (61)   | 210   | (39)   | 0     | (0)   | 0    | (0)   | 532   | (5.4) |
| Respiratory distress (XM07z)                                   | 324   | (63)   | 188   | (37)   | 0     | (0)   | 0    | (0)   | 512   | (5.2) |
| Bronchiolitis (XSDOK)                                          | 295   | (58)   | 215   | (42)   | 0     | (0)   | 0    | (0)   | 510   | (5.2) |
| Acute lower respiratory tract infection (XE0Xt)                | 163   | (53)   | 144   | (47)   | 0     | (0)   | 0    | (0)   | 307   | (3.1) |
| Seizure (XaEHz)                                                | 155   | (51)   | 146   | (49)   | 0     | (0)   | 0    | (0)   | 301   | (3.0) |
| Head injury NOS (XA004)                                        | 186   | (66)   | 97    | (34)   | 0     | (0)   | 0    | (0)   | 283   | (2.9) |
| Febrile convulsion (XM03I)                                     | 163   | (58)   | 116   | (42)   | 0     | (0)   | 0    | (0)   | 279   | (2.8) |
| Asthma (H33)                                                   | 156   | (56)   | 122   | (44)   | 0     | (0)   | 0    | (0)   | 278   | (2.8) |
| Acute laryngotracheobronchitis (Xa0IW)                         | 179   | (67)   | 87    | (33)   | 0     | (0)   | 0    | (0)   | 266   | (2.7) |
| Discordant ventriculoarterial connection (P51)                 | 186   | (70)   | 79    | (30)   | 0     | (0)   | 0    | (0)   | 265   | (2.7) |
| Status asthmaticus (X102D)                                     | 161   | (62)   | 100   | (38)   | 0     | (0)   | 0    | (0)   | 261   | (2.6) |
| Neonatal necrotising enterocolitis (Q464.)                     | 139   | (58)   | 100   | (42)   | 0     | (0)   | 0    | (0)   | 239   | (2.4) |
| Hypoplastic left heart syndrome (P67)                          | 142   | (64)   | 79    | (36)   | 0     | (0)   | 0    | (0)   | 221   | (2.2) |
| Aspiration pneumonitis (H47)                                   | 118   | (56)   | 94    | (44)   | 0     | (0)   | 0    | (0)   | 212   | (2.1) |
| Diabetic ketoacidosis (C101.)                                  | 88    | (42)   | 121   | (58)   | 1     | (0)   | 0    | (0)   | 210   | (2.1) |
| Acute respiratory failure (H590.)                              | 120   | (61)   | 77    | (39)   | 0     | (0)   | 0    | (0)   | 197   | (2.0) |
| Epileptic seizures - clonic (F2512)                            | 102   | (52)   | 93    | (48)   | 0     | (0)   | 0    | (0)   | 195   | (2.0) |
| Respiratory arrest (XM09W)                                     | 121   | (65)   | 65    | (35)   | 0     | (0)   | 0    | (0)   | 186   | (1.9) |
| Total                                                          | 5,749 | (58.2) | 4,129 | (41.8) | 1     | (0.0) | 3    | (0.0) | 9,882 | /     |

## Table 26 Retrievals by team type and age, 2004 - 2006

|                                  |       |        | A     | ge Grou | p (Year | s)     |       |        |        |        |
|----------------------------------|-------|--------|-------|---------|---------|--------|-------|--------|--------|--------|
| Retrieval Team                   | <     | 1      | 1-    | 4       | 5-1     | 10     | 11-   | -15    | Tot    | al     |
|                                  | n     | %      | n     | %       | n       | %      | n     | %      | n      | %      |
|                                  |       |        |       |         |         |        |       |        |        |        |
| Own team                         | 3,452 | (50)   | 1,884 | (27)    | 928     | (13)   | 698   | (10)   | 6,962  | (47.2) |
| Other specialist team (PICU)     | 2,284 | (55)   | 989   | (24)    | 467     | (11)   | 384   | (9)    | 4,124  | (28.0) |
| Other specialist team (non-PICU) | 1,340 | (70)   | 190   | (10)    | 157     | (8)    | 215   | (11)   | 1,902  | (12.9) |
| Non-specialist team              | 746   | (56)   | 209   | (16)    | 153     | (12)   | 220   | (17)   | 1,328  | (9.0)  |
| Unknown                          | 235   | (56)   | 107   | (25)    | 45      | (11)   | 36    | (9)    | 423    | (2.9)  |
| Total                            | 8,057 | (54.7) | 3,379 | (22.9)  | 1,750   | (11.9) | 1,553 | (10.5) | 14,739 |        |

Figure 26 Retrievals by team type, 2004 - 2006

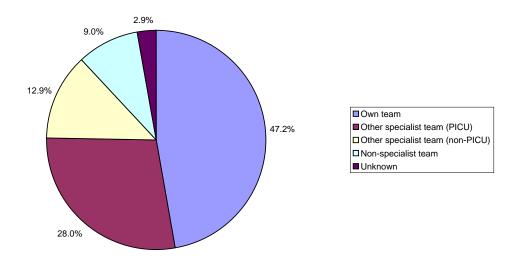
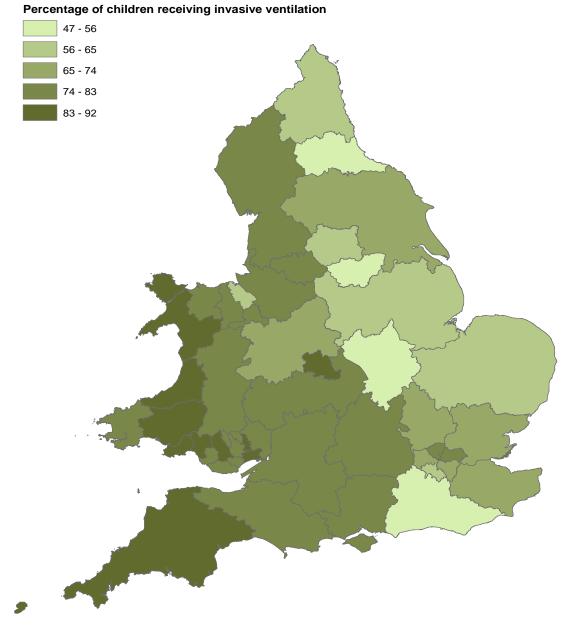



Table 27 'Non-specialist team' retrievals by diagnostic group and age, 2004 - 2006

|                        |     |        | A   | ge Grou | p (Yea | ars)   |     |        |       |        |
|------------------------|-----|--------|-----|---------|--------|--------|-----|--------|-------|--------|
| Diagnostic Group       |     | <1     | 1   | -4      | 5      | -10    | 11  | -15    | То    | tal    |
|                        | n   | %      | n   | %       | n      | %      | n   | %      | n     | %      |
|                        |     |        |     |         |        |        |     |        |       |        |
| Blood / lymphatic      | 5   | (45)   | 3   | (27)    | 1      | (9)    | 2   | (18)   | 11    | (0.8)  |
| Body wall and cavities | 37  | (90)   | 1   | (2)     | 0      | (0)    | 3   | (7)    | 41    | (3.1)  |
| Cardiovascular         | 235 | (79)   | 24  | (8)     | 13     | (4)    | 26  | (9)    | 298   | (22.4) |
| Endocrine / metabolic  | 11  | (42)   | 3   | (12)    | 7      | (27)   | 5   | (19)   | 26    | (2.0)  |
| Gastrointestinal       | 134 | (82)   | 11  | (7)     | 10     | (6)    | 8   | (5)    | 163   | (12.3) |
| Infection              | 10  | (34)   | 8   | (28)    | 6      | (21)   | 5   | (17)   | 29    | (2.2)  |
| Multisystem            | 5   | (83)   | 1   | (17)    | 0      | (0)    | 0   | (0)    | 6     | (0.5)  |
| Musculoskeletal        | 5   | (63)   | 1   | (13)    | 1      | (13)   | 1   | (13)   | 8     | (0.6)  |
| Neurological           | 51  | (34)   | 33  | (22)    | 33     | (22)   | 35  | (23)   | 152   | (11.4) |
| Oncology               | 6   | (19)   | 13  | (41)    | 6      | (19)   | 7   | (22)   | 32    | (2.4)  |
| Respiratory            | 187 | (63)   | 59  | (20)    | 24     | (8)    | 27  | (9)    | 297   | (22.4) |
| Trauma                 | 7   | (4)    | 44  | (24)    | 48     | (26)   | 87  | (47)   | 186   | (14.0) |
| Other                  | 51  | (67)   | 8   | (11)    | 3      | (4)    | 14  | (18)   | 76    | (5.7)  |
| Unknown                | 2   | (67)   | 0   | (0)     | 1      | (33)   | 0   | (0)    | 3     | (0.2)  |
| Total                  | 746 | (56.2) | 209 | (15.7)  | 153    | (11.5) | 220 | (16.6) | 1,328 |        |

| Table 2 | 28 Retrievals b | by retrie    | val type l     | by NHS trust, 2004 - 20 | 006           | D-41 17                                    |                |              |              |         |              |              |                |
|---------|-----------------|--------------|----------------|-------------------------|---------------|--------------------------------------------|----------------|--------------|--------------|---------|--------------|--------------|----------------|
| Year    | NHS Trust       | Own          |                | Other specialist tea    |               | Retrieval Team<br>Other specialist team (n |                | Non-speciali |              | Unkno   |              | Tot          |                |
|         |                 | n            | %              | n                       | %             | n                                          | %              | n            | %            | n       | %            | n            | %              |
| 2004    | A<br>B          | 24           | (21)<br>(5)    | 26<br>12                | (23)<br>(57)  | 62<br>7                                    | (55)<br>(33)   | 0            | (0)<br>(5)   | 1<br>0  | (1)<br>(0)   | 113<br>21    | (2.4<br>(0.4   |
|         | C               | 98           | (86)           | 9                       | (37)          | 2                                          | (33)           | 5            | (4)          | 0       | (0)          | 114          | (2.4           |
|         | D               | 247          | (72)           | 22                      | (6)           | 55                                         | (16)           | 21           | (6)          | 0       | (0)          | 345          | (7.2           |
|         | E               | 7<br>451     | (1)<br>(70)    | 570<br>66               | (70)<br>(10)  | 5<br>72                                    | (1)            | 228<br>27    | (28)<br>(4)  | 3<br>24 | (0)<br>(4)   | 813<br>640   | (17.0<br>(13.3 |
|         | Н               | 451          | (70)           | 91                      | (10)          | 11                                         | (11)           | 7            | (4)          | 4       | (4)          | 121          | (13.3)         |
|         | I               | 168          | (75)           | 11                      | (5)           | 36                                         | (16)           | 9            | (4)          | 0       | (0)          | 224          | (4.7           |
|         | J<br>K          | 1<br>98      | (10)           | 9<br>33                 | (90)          | 0<br>103                                   | (0)            | 0            | (0)          | 0       | (0)          | 10           | (0.2)          |
|         | L               | 98           | (37)<br>(94)   | 2                       | (13)          | 4                                          | (39) (4)       | 28<br>0      | (11)<br>(0)  | 0       | (0)<br>(0)   | 262<br>100   | (5.5)<br>(2.1) |
|         | М               | 43           | (48)           | 28                      | (31)          | 8                                          | (9)            | 10           | (11)         | 0       | (0)          | 89           | (1.9           |
|         | N               | 65<br>1      | (66)           | 5                       | (5)           | 12<br>2                                    | (12)           | 16           | (16)         | 0       | (0)          | 98           | (2.0           |
|         | O<br>P          | 174          | (1) (67)       | 17<br>20                | (21)          | 43                                         | (2)            | 0<br>23      | (0)          | 61<br>1 | (75)<br>(0)  | 81<br>261    | (1.7)<br>(5.4) |
|         | Q               | 109          | (64)           | 12                      | (7)           | 27                                         | (16)           | 19           | (11)         | 3       | (2)          | 170          | (3.5           |
|         | R               | 172          | (78)           | 2                       | (1)           | 31                                         | (14)           | 15           | (7)          | 0       | (0)          | 220          | (4.6           |
|         | S<br>T          | 2            | (8)            | 4<br>98                 | (17)<br>(82)  | 16<br>1                                    | (67)           | 2<br>18      | (8)<br>(15)  | 0       | (0)<br>(2)   | 24<br>119    | (0.5)<br>(2.5) |
|         | U               | 95           | (33)           | 161                     | (52)          | 6                                          | (2)            | 2            | (1)          | 20      | (7)          | 284          | (5.9)          |
|         | V               | 132          | (53)           | 19                      | (8)           | 71                                         | (29)           | 26           | (10)         | 0       | (0)          | 248          | (5.2)          |
|         | W<br>X          | 172<br>178   | (100)<br>(70)  | 0<br>62                 | (0) (25)      | 0 5                                        | (0)            | 0            | (0)          | 0<br>5  | (0)<br>(2)   | 172<br>253   | (3.6)<br>(5.3) |
|         | Y               | 1/0          | (92)           | 02                      | (25)          | 1                                          | (2)            | 0            | (1)          | 0       | (2)          | 253          | (0.3           |
| 2004 T  |                 | 2,352        | (49.1)         | 1,279                   | (26.7)        | 580                                        | (12.1)         | 460          | (9.6)        | 124     | (2.6)        | 4,795        |                |
| 2005    | Α               | 29           | (22)           | 55                      | (43)          | 45                                         | (35)           | 0            | (0)          | 0       | (0)          | 129          | (2.6           |
|         | B<br>C          | 1<br>104     | (10)<br>(89)   | 1<br>7                  | (10) (6)      | 4 2                                        | (40)           | 4            | (40)         | 0       | (0)<br>(0)   | 10<br>117    | (0.2)<br>(2.3) |
|         | D               | 227          | (70)           | 28                      | (0)           | 55                                         | (17)           | 13           | (4)          | 3       | (1)          | 326          | (6.5           |
|         | E               | 0            | (0)            | 573                     | (80)          | 2                                          | (0)            | 141          | (20)         | 1       | (0)          | 717          | (14.2          |
|         | F               | 433          | (71)           | 100                     | (16)          | 58                                         | (10)           | 16           | (3)          | 0       | (0)          | 607          | (12.0          |
|         | G<br>H          | 0            | (0)<br>(6)     | 0 89                    | (0)<br>(64)   | 0<br>31                                    | (0)<br>(22)    | 1            | (50)<br>(6)  | 1<br>3  | (50)<br>(2)  | 2<br>140     | (0.0)<br>(2.8) |
|         | i               | 150          | (67)           | 15                      | (7)           | 48                                         | (21)           | 11           | (5)          | 0       | (0)          | 224          | (4.4)          |
|         | J               | 3            | (38)           | 2                       | (25)          | 0                                          | (0)            | 2            | (25)         | 1       | (13)         | 8            | (0.2           |
|         | K<br>L          | 109<br>115   | (35)<br>(88)   | 44<br>6                 | (14)<br>(5)   | 117<br>9                                   | (37)<br>(7)    | 39<br>1      | (12)<br>(1)  | 4       | (1)<br>(0)   | 313<br>131   | (6.2<br>(2.6   |
|         | M               | 80           | (71)           | 16                      | (14)          | 11                                         | (10)           | 5            | (4)          | 0       | (0)          | 112          | (2.2)          |
|         | N               | 51           | (59)           | 7                       | (8)           | 5                                          | (6)            | 23           | (27)         | 0       | (0)          | 86           | (1.7           |
|         | O<br>P          | 4<br>160     | (4)<br>(58)    | 42<br>9                 | (45)          | 5<br>65                                    | (5)<br>(23)    | 1<br>43      | (1)<br>(16)  | 42<br>0 | (45)<br>(0)  | 94<br>277    | (1.9)<br>(5.5) |
|         | Q               | 126          | (67)           | 14                      | (7)           | 27                                         | (14)           | 21           | (10)         | 1       | (1)          | 189          | (3.8           |
|         | R               | 200          | (71)           | 11                      | (4)           | 51                                         | (18)           | 19           | (7)          | 0       | (0)          | 281          | (5.6           |
|         | S<br>T          | 0            | (0)<br>(0)     | 9<br>90                 | (36)<br>(76)  | 14                                         | (56)<br>(2)    | 2<br>25      | (8)<br>(21)  | 0       | (0)<br>(1)   | 25<br>118    | (0.5)<br>(2.3) |
|         | U               | 0            | (0)            | 147                     | (47)          | 7                                          | (2)            | 0            | (0)          | 156     | (50)         | 310          | (6.2           |
|         | V               | 88           | (41)           | 76                      | (36)          | 19                                         | (9)            | 25           | (12)         | 5       | (2)          | 213          | (4.2           |
|         | W<br>X          | 185<br>149   | (91)           | 2                       | (1)<br>(28)   | 1<br>16                                    | (0)            | 9            | (4)          | 6<br>14 | (3)          | 203<br>264   | (4.0)          |
|         | Y               | 149          | (56)<br>(80)   | 75<br>14                | (20)          | 11                                         | (6)<br>(8)     | 10<br>4      | (4)          | 0       | (5)<br>(0)   | 143          | (5.2)<br>(2.8) |
| 2005 T  | otal            | 2,336        | (46.4)         | 1,432                   | (28.4)        | 605                                        | (12.0)         | 428          | (8.5)        | 238     | (4.7)        | 5,039        |                |
| 2006    | Α               | 50           | (38)           | 42                      | (32)          | 17                                         | (13)           | 23           | (17)         | 0       | (0)          | 132          | (2.7)          |
|         | В               | 2            | (20)           | 3                       | (30)          | 3                                          | (30)           | 1            | (10)         | 1       | (10)         | 10           | (0.2           |
|         | C<br>D          | 90<br>169    | (80)<br>(56)   | 12<br>34                | (11)<br>(11)  | 4 68                                       | (4)            | 7<br>27      | (6)<br>(9)   | 0       | (0)          | 113<br>300   | (2.3)<br>(6.1) |
|         | E               | 6            | (1)            | 594                     | (80)          | 4                                          | (1)            | 139          | (19)         | 0       | (0)          | 743          | (15.1)         |
|         | F               | 388          | (80)           | 65                      | (13)          | 10                                         | (2)            | 20           | (4)          | 0       | (0)          | 483          | (9.8)          |
|         | G<br>H          | 0            | (0)<br>(12)    | 0 86                    | (0) (74)      | 0 8                                        | (0) (7)        | 1 7          | (100)<br>(6) | 0       | (0)<br>(2)   | 1<br>117     | (0.0)<br>(2.4) |
|         | п<br>           | 130          | (64)           | 15                      | (74)          | 51                                         | (25)           | 6            | (3)          | 0       | (2)          | 202          | (4.1)          |
|         | J               | 0            | (0)            | 0                       | (0)           | 2                                          | (100)          | 0            | (0)          | 0       | (0)          | 2            | (0.0)          |
|         | K<br>L          | 102<br>114   | (32)<br>(77)   | 44                      | (14)<br>(5)   | 125<br>22                                  | (39)<br>(15)   | 47<br>5      | (15)<br>(3)  | 4       | (1)<br>(0)   | 322<br>148   | (6.6)<br>(3.0) |
|         | M               | 109          | (81)           | 10                      | (7)           | 12                                         | (15)           | 4            | (3)          | 0       | (0)          | 135          | (2.8           |
|         | N               | 48           | (64)           | 9                       | (12)          | 8                                          | (11)           | 10           | (13)         | 0       | (0)          | 75           | (1.5           |
|         | 0               | 2            | (1)            | 15                      | (10)          | 125                                        | (87)           | 0            | (0)          | 1       | (1)          | 143          | (2.9)          |
|         | P<br>Q          | 211<br>98    | (66)<br>(62)   | 19<br>4                 | (6)<br>(3)    | 38<br>44                                   | (12)<br>(28)   | 52<br>12     | (16)<br>(8)  | 0       | (0)<br>(0)   | 320<br>158   | (6.5<br>(3.2   |
|         | R               | 146          | (63)           | 9                       | (4)           | 50                                         | (22)           | 25           | (11)         | 2       | (1)          | 232          | (4.7)          |
|         | S               | 0            | (0)            | 7                       | (23)          | 14                                         | (45)           | 10           | (32)         | 0       | (0)          | 31           | (0.6           |
|         | T<br>U          | 0            | (0)            | 118                     | (91)          | 1                                          | (1)            | 11           | (8)          | 0       | (0)          | 130<br>268   | (2.7)          |
|         | V               | 115          | (1)<br>(63)    | 236<br>33               | (88)<br>(18)  | 19<br>22                                   | (7)            | 1            | (0)          | 9<br>0  | (3)          | 268<br>182   | (5.5<br>(3.7   |
|         | w               | 220          | (91)           | 2                       | (1)           | 1                                          | (0)            | 12           | (5)          | 7       | (3)          | 242          | (4.9           |
|         | X               | 137          | (51)           | 39                      | (15)          | 52                                         | (19)           | 7            | (3)          | 33      | (12)         | 268          | (5.5           |
| 2006 T  | Y               | 120<br>2,274 | (81)<br>(46.4) | 10<br>1,413             | (7)<br>(28.8) | 17<br>717                                  | (11)<br>(14.6) | 1<br>440     | (1)<br>(9.0) | 0<br>61 | (0)<br>(1.2) | 148<br>4,905 | (3.0           |
|         |                 |              |                |                         |               |                                            |                |              |              |         |              |              |                |
| Grand   | Total           | 6,962        | (47.2)         | 4,124                   | (28.0)        | 1,902                                      | (12.9)         | 1,328        | (9.0)        | 423     | (2.9)        | 14,739       |                |

| 'ear  | NHS Trust | Invasive Ver      | tilation       | Non-Invasive Ve | ntilation      | Tracheos |            | erven    | tion<br>MO | IV Vasoactiv      | o Druge       | LVAD   |                       | Device      | Renal Su | innert      | Admis        | sione        |
|-------|-----------|-------------------|----------------|-----------------|----------------|----------|------------|----------|------------|-------------------|---------------|--------|-----------------------|-------------|----------|-------------|--------------|--------------|
| ear   | NHS Irust | invasive ver<br>n | %              | Non-Invasive ve | %              | n        | %          | n        | MO<br>%    | iv vasoactiv<br>n | e Drugs<br>%  | n %    | n                     | Jevice<br>% | n n      | ipport<br>% | n            | sions<br>%   |
| 004   | Α         | 202               | (46)           | 73              | (16)           | 2        | (0)        | 0        | (0)        | 62                | (14)          |        | 0) 47                 |             | 0        | (0)         | 443          | (3.2         |
|       | В         | 58                | (20)           | 32              | (11)           | 3        | (1)        | 0        | (0)        | 16                | (6)           |        | 0) 0                  |             | 0        | (0)         | 285          | (2.1         |
|       | C         | 233<br>448        | (88)<br>(77)   | 15<br>44        | (6)<br>(8)     | 15<br>14 | (6)        | 0        | (0)<br>(0) | 40<br>106         | (15)<br>(18)  |        | 0) 7<br>0) 28         | (3)<br>(5)  | 4        | (2) (2)     | 264<br>584   | (1.9<br>(4.2 |
|       | E         | 1,402             | (79)           | 351             | (20)           | 65       | (2)<br>(4) | 52       | (3)        | 812               | (46)          |        | ) <u>2</u> 0<br>)) 41 |             | 60       | (2)         | 1,778        | (12.8        |
|       | F         | 927               | (80)           | 128             | (11)           | 14       | (1)        | 1        | (0)        | 360               | (31)          |        | 0) 2                  |             | 26       | (2)         | 1,165        | (8.4         |
|       | G         | 40                | (91)           | 5               | (11)           | 0        | (0)        | 0        | (0)        | 26                | (59)          | 0 (    | 0) 4                  | (9)         | 0        | (0)         | 44           | (0.3         |
|       | н         | 221               | (72)           | 18              | (6)            | 4        | (1)        | 1        | (0)        | 52                | (17)          |        | 0) 20                 |             | 17       | (6)         | 308          | (2.2         |
|       |           | 583               | (68)           | 52              | (6)            | 30       | (3)        | 2        | (0)        | 318<br>2          | (37)          |        | 0) 26                 |             | 60<br>2  | (7)         | 859          | (6.2         |
|       | J<br>К    | 12<br>541         | (15)<br>(61)   | 3<br>63         | (4)            | 0<br>35  | (0) (4)    | 1<br>24  | (1)<br>(3) | 284               | (2)<br>(32)   |        | 0) 0<br>0) 29         |             | 37       | (2)<br>(4)  | 82<br>883    | (0.6<br>(6.4 |
|       | r<br>L    | 140               | (62)           | 62              | (27)           | 12       | (4)        | 0        | (0)        | 39                | (17)          |        | ) 23<br>)) 2          |             | 0        | (4)         | 226          | (1.6         |
|       | M         | 204               | (55)           | 46              | (12)           | 23       | (6)        | 0        | (0)        | 46                | (12)          |        | ) 22                  |             | 6        | (2)         | 373          | (2.7         |
|       | N         | 240               | (71)           | 66              | (20)           | 6        | (2)        | 0        | (0)        | 73                | (22)          | 0 (    | 0) 12                 | (4)         | 6        | (2)         | 337          | (2.4         |
|       | 0         | 388               | (70)           | 74              | (13)           | 9        | (2)        | 5        | (1)        | 315               | (57)          |        | 0) 1                  |             | 4        | (1)         | 553          | (4.0         |
|       | P         | 820               | (84)           | 14              | (1)            | 2        | (0)        | 2        | (0)        | 277               | (28)          |        | 0) 2                  |             | 11       | (1)         | 982          | (7.1         |
|       | Q<br>R    | 227<br>479        | (41)           | 109             | (20)           | 9        | (2)        | 0        | (0)<br>(0) | 83                | (15)          |        | 0) 20                 |             | 13<br>10 | (2)         | 547<br>585   | (4.0         |
|       | S         | 479               | (82)<br>(35)   | 68<br>36        | (12)           | 2        | (1)        | 2        | (0)        | 197<br>16         | (34)<br>(10)  |        | 0) 17<br>0) 7         |             | 1        | (2)         | 167          | (4.2<br>(1.2 |
|       | T         | 119               | (33)           | 58              | (16)           | 5        | (1)        | 0        | (0)        | 35                | (10)          |        | )) 9                  |             | 1        | (0)         | 366          | (2.6         |
|       | U         | 261               | (67)           | 109             | (28)           | 12       | (3)        | 0        | (0)        | 107               | (27)          |        | 0) 0                  |             | 6        | (2)         | 392          | (2.8         |
|       | v         | 936               | (95)           | 166             | (17)           | 35       | (4)        | 4        | (0)        | 550               | (56)          |        | )<br>) 47             |             | 39       | (4)         | 983          | (7.1         |
|       | w         | 519               | (80)           | 71              | (11)           | 12       | (2)        | 2        | (0)        | 314               | (48)          |        | 0) 13                 |             | 42       | (6)         | 648          | (4.7         |
|       | X         | 500               | (52)           | 123             | (13)           | 27       | (3)        | 44       | (5)        | 235               | (24)          |        | 0) 0                  |             | 18       | (2)         | 964          | (7.0         |
| 004 T | Y<br>otal | 14<br>9,573       | (70)<br>(69.2) | 3<br>1,789      | (15)<br>(12.9) | 1<br>345 | (5)        | 0<br>140 | (0)        | 4,366             | (5)<br>(31.6) | 0 (    | 0) 0<br>I) 356        |             | 0<br>377 | (0)         | 20<br>13,838 | (0.1         |
| 005   | A         | 171               | (41)           | 40              | (10)           | 8        | (2)        | 0        | (0)        | 55                | (13)          | 0 (    | 0) 21                 | (5)         | 0        | (0)         | 420          | (3.0         |
|       | В         | 29                | (12)           | 18              | (8)            | 10       | (4)        | 0        | (0)        | 8                 | (3)           |        | 0) 0                  |             | 0        | (0)         | 233          | (1.7         |
|       | С         | 207               | (76)           | 26              | (10)           | 8        | (3)        | 0        | (0)        | 31                | (11)          | 0 (    | )) 7                  | (3)         | 5        | (2)         | 271          | (1.9         |
|       | D         | 438               | (76)           | 61              | (11)           | 13       | (2)        | 0        | (0)        | 137               | (24)          |        | 0) 45                 |             | 18       | (3)         | 580          | (4.1         |
|       | E         | 1,308             | (86)           | 174             | (11)           | 43       | (3)        | 44       | (3)        | 746               | (49)          |        | 0) 59                 |             | 63       | (4)         | 1,515        | (10.8        |
|       | F<br>G    | 911<br>41         | (81)           | 119<br>5        | (11)           | 12       | (1)        | 0        | (0)        | 333<br>32         | (30)          |        | )) 0<br>)) 6          |             | 33<br>0  | (3)         | 1,123        | (8.0         |
|       | H         | 242               | (82)<br>(72)   | 22              | (10)           | 5        | (2)        | 0        | (0)<br>(0) | 52                | (64)<br>(15)  |        | 0) 6<br>0) 23         |             | 19       | (0)<br>(6)  | 50<br>337    | (0.4<br>(2.4 |
|       |           | 599               | (72)           | 66              | (8)            | 30       | (4)        | 2        | (0)        | 325               | (38)          |        | ) 23<br>)) 22         |             | 58       | (7)         | 853          | (6.1         |
|       | J         | 29                | (30)           | 10              | (10)           | 0        | (0)        | 0        | (0)        | 2                 | (2)           |        | ) 1                   |             | 1        | (1)         | 96           | (0.7         |
|       | к         | 533               | (60)           | 81              | (9)            | 31       | (4)        | 18       | (2)        | 270               | (31)          |        | ) 16                  | (2)         | 49       | (6)         | 884          | (6.3         |
|       | L         | 163               | (59)           | 66              | (24)           | 17       | (6)        | 0        | (0)        | 60                | (22)          |        | )) 3                  |             | 2        | (1)         | 274          | (1.9         |
|       | M         | 212               | (60)           | 50              | (14)           | 19       | (5)        | 0        | (0)        | 59                | (17)          |        | 0) 18                 |             | 10       | (3)         | 355          | (2.5         |
|       | N<br>O    | 245<br>429        | (83)<br>(70)   | 44<br>124       | (15)<br>(20)   | 13<br>9  | (4)        | 0        | (0)<br>(0) | 102<br>366        | (35)<br>(60)  |        | D) 16<br>D) 0         |             | 9        | (3)<br>(0)  | 295<br>615   | (2.1<br>(4.4 |
|       | P         | 866               | (85)           | 49              | (20)           | 13       | (1)        | 5        | (0)        | 342               | (34)          |        | )) 16                 |             | 21       | (0)         | 1,017        | (7.2         |
|       | Q         | 246               | (42)           | 91              | (16)           | 18       | (3)        | 0        | (0)        | 81                | (14)          |        | 0) 13                 |             | 9        | (2)         | 581          | (4.1         |
|       | R         | 519               | (78)           | 85              | (13)           | 6        | (1)        | 0        | (0)        | 218               | (33)          |        | ) 15                  |             | 16       | (2)         | 665          | (4.7         |
|       | S         | 71                | (39)           | 16              | (9)            | 2        | (1)        | 0        | (0)        | 12                | (7)           | 0 (    | )) 2                  | (1)         | 2        | (1)         | 180          | (1.3         |
|       | т         | 139               | (34)           | 92              | (22)           | 2        | (0)        | 0        | (0)        | 28                | (7)           |        | 0) 4                  |             | 4        | (1)         | 413          | (2.9         |
|       | U         | 285               | (70)           | 93              | (23)           | 11       | (3)        | 0        | (0)        | 111               | (27)          |        | 0) 2                  |             | 6        | (1)         | 408          | (2.9         |
|       | V<br>W    | 0<br>519          | (0)<br>(74)    | 0<br>127        | (0)<br>(18)    | 0<br>14  | (0)<br>(2) | 0        | (0)<br>(0) | 0<br>313          | (0)<br>(45)   |        | 0) 0<br>0) 13         |             | 0<br>48  | (0)<br>(7)  | 908<br>701   | (6.5<br>(5.0 |
|       | X         | 454               | (74)           | 60              | (10)           | 14       | (2)        | 47       | (5)        | 218               | (24)          |        | )) 13<br>)) 0         |             | 32       | (4)         | 891          | (6.3         |
|       | Ŷ         | 199               | (51)           | 17              | (4)            | 7        | (2)        | 0        | (0)        | 26                | (2.)          |        | D) 6                  |             | 1        | (0)         | 391          | (2.8         |
| 005 T | otal      | 8,855             | (63.0)         | 1,536           | (10.9)         | 302      | (2.1)      | 121      | (0.9)      | 3,927             | (27.9)        | 5 (0.  |                       |             | 407      | (2.9)       | 14,056       |              |
| 006   | Α         | 179               | (40)           | 33              | (7)            | 10       | (2)        | 0        | (0)        | 50                | (11)          |        | 0) 21                 |             | 2        | (0)         | 449          | (3.1         |
|       | B         | 14<br>230         | (6)            | 34              | (15)           | 3<br>4   | (1)        | 0        | (0)        | 1                 | (0)           |        | )) 1                  | (0)         | 0        | (0)         | 226          | (1.6         |
|       | C         | 230               | (76)<br>(78)   | 34<br>84        | (11)<br>(15)   | 4<br>24  | (1)<br>(4) | 0        | (0)<br>(0) | 29<br>158         | (10)<br>(28)  |        | 0) 6<br>0) 41         |             | 6<br>16  | (2)<br>(3)  | 301<br>571   | (2.1<br>(4.0 |
|       | E         | 1,401             | (78)           | 148             | (15)           | 43       | (4)        | 57       | (0)        | 771               | (28)          |        | ) 41<br>)) 57         |             | 80       | (3)         | 1,600        | (4.0         |
|       | F         | 858               | (79)           | 108             | (10)           | 13       | (1)        | 1        | (0)        | 352               | (32)          |        | ) 0)                  |             | 42       | (4)         | 1,086        | (7.6         |
|       | G         | 34                | (94)           | 4               | (11)           | 0        | (0)        | 0        | (0)        | 26                | (72)          | 0 (    | )) 3                  | (8)         | 0        | (0)         | 36           | (0.3         |
|       | н         | 228               | (72)           | 29              | (9)            | 6        | (2)        | 0        | (0)        | 59                | (19)          | 0 (    | 0) 10                 | (3)         | 23       | (7)         | 315          | (2.2         |
|       | 1         | 586               | (64)           | 73              | (8)            | 24       | (3)        | 5        | (1)        | 345               | (38)          |        | 0) 17                 |             | 82       | (9)         | 909          | (6.3         |
|       | J         | 25                | (34)           | 7               | (10)           | 0        | (0)        | 0        | (0)        | 5                 | (7)           |        | 0) 0                  |             | 0        | (0)         | 73           | (0.5         |
|       | K         | 555<br>171        | (61)<br>(57)   | 67<br>71        | (7)<br>(24)    | 57<br>14 | (6)<br>(5) | 15<br>0  | (2)<br>(0) | 297<br>72         | (33)<br>(24)  |        | l) 16<br>D) 3         |             | 44<br>6  | (5)<br>(2)  | 907<br>299   | (6.3<br>(2.1 |
|       | M         | 237               | (57)           | 44              | (24)           | 8        | (2)        | 0        | (0)        | 46                | (24)          |        | )) 12                 |             | 15       | (2)         | 405          | (2.1         |
|       | N         | 231               | (84)           | 44              | (17)           | 6        | (2)        | 0        | (0)        | 116               | (42)          |        | )) 12<br>)) 14        |             | 11       | (4)         | 275          | (1.9         |
|       | 0         | 474               | (72)           | 145             | (22)           | 2        | (0)        | 3        | (0)        | 380               | (58)          |        | 0) 0                  |             | 4        | (1)         | 655          | (4.6         |
|       | Р         | 867               | (79)           | 58              | (5)            | 24       | (2)        | 4        | (0)        | 368               | (33)          | 1 (    | 0) 16                 | (1)         | 21       | (2)         | 1,102        | (7.7         |
|       | Q         | 214               | (43)           | 67              | (13)           | 12       | (2)        | 0        | (0)        | 83                | (17)          | 0 (    | 0) 13                 | (3)         | 14       | (3)         | 503          | (3.5         |
|       | R         | 519               | (79)           | 80              | (12)           | 21       | (3)        | 2        | (0)        | 205               | (31)          |        | 0) 19                 |             | 21       | (3)         | 656          | (4.6         |
|       | S         | 76                | (40)           | 30              | (16)           | 5        | (3)        | 0        | (0)        | 15                | (8)           |        | 0) 6                  |             | 0        | (0)         | 188          | (1.3         |
|       | T<br>U    | 179<br>223        | (40)<br>(61)   | 120<br>80       | (27)           | 0        | (0)        | 0        | (0)        | 33<br>97          | (7)           |        | )) 9<br>)) 1          | (-)         | 2        | (0)         | 442          | (3.1         |
|       | V         | 874               | (84)           | 220             | (22)<br>(21)   | 8<br>10  | (2)        | 0        | (0)<br>(0) | 482               | (26)<br>(46)  |        | 0) 1<br>0) 39         | (0)<br>(4)  | 67       | (2)<br>(6)  | 367<br>1,046 | (2.6<br>(7.3 |
|       | ŵ         | 523               | (81)           | 165             | (21)           | 18       | (3)        | 1        | (0)        | 372               | (40)          |        | ) 42                  |             | 46       | (7)         | 642          | (4.5         |
|       | x         | 430               | (49)           | 49              | (6)            | 24       | (3)        | 42       | (5)        | 214               | (24)          |        | 0) 0                  |             | 33       | (4)         | 877          | (6.1         |
|       | Y         | 220               | (55)           | 32              | (8)            | 9        | (2)        | 0        | (0)        | 30                | (8)           | 0 (    | )) 7                  | (2)         | 0        | (0)         | 397          | (2.8         |
| 006 T | otal      | 9,792             | (68.3)         | 1,830           | (12.8)         | 345      | (2.4)      | 131      | (0.9)      | 4,606             | (32.1)        | 15 (0. | l) 353                | (2.5)       | 541      | (3.8)       | 14,327       |              |
|       |           | 28,220            | (66.8)         | 5,155           | (12.2)         | 992      | (2.3)      |          |            |                   |               |        |                       |             |          |             |              |              |

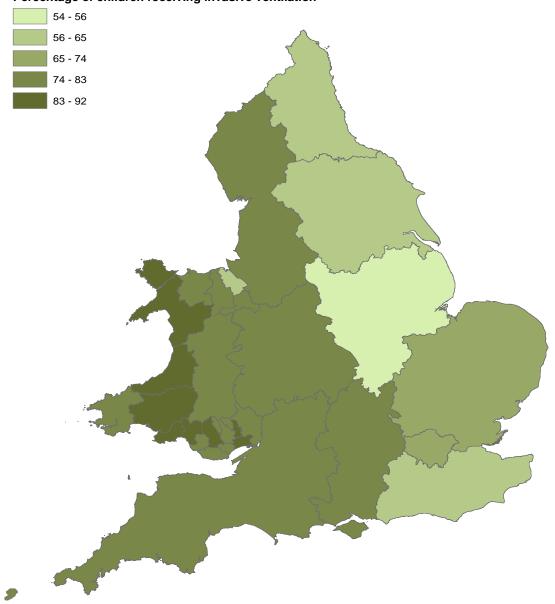

Age Group (Years) Ventilation Status 1-4 11-15 Total 5-10 <1 <u>%</u> % % % % n n n n n Invasive only 12,263 (50) 6,336 (26) 3,182 (13) 2,916 24,697 (58.5) (12) Non-invasive only 1,632 831 (51) 331 (20) 239 (15) 231 (14) (3.9) Both 3,523 2,361 (67) 550 (16) 334 (9) 278 (8) (8.3) Neither 3,043 1,990 1,954 11,092 (26.3) 4,105 (37) (27) (18) (18) Unknown (14) 1,277 669 (52) 289 (23) 178 141 (11) (3.0) 20,229 Total (14.0) 42,221 (47.9) 10,549 (25.0) 5,923 5,520 (13.1)

|        |           |               |              | tus by NHS tr    |            | - 2006<br>ation Sta | atus        |            |              |           |            |              |                  |      |
|--------|-----------|---------------|--------------|------------------|------------|---------------------|-------------|------------|--------------|-----------|------------|--------------|------------------|------|
| Year   | NHS Trust | Invasive<br>n | e only<br>%  | Non-invasiv<br>n |            | Bo                  |             | Neit<br>n  | her<br>%     | Unkn<br>n | own<br>%   | Tot<br>n     | al<br>%          |      |
|        |           |               |              |                  |            |                     |             |            |              |           |            |              |                  |      |
| 2004   | A<br>B    | 159<br>51     | (36)<br>(18) | 30<br>25         | (7)<br>(9) | 43<br>7             | (10)        | 211<br>202 | (48)<br>(71) | 0         | (0)<br>(0) | 443<br>285   | (3.2<br>(2.1     |      |
|        | C         | 220           | (83)         | 23               | (1)        | 13                  | (2)         | 202        | (11)         | 0         | (0)        | 263          | (1.9             |      |
|        | D         | 421           | (72)         | 17               | (3)        | 27                  | (5)         | 116        | (20)         | 3         | (1)        | 584          | (4.2             |      |
|        | E         | 1,145         | (64)         | 94               | (5)        | 257                 | (14)        | 282        | (16)         | 0         | (0)        | 1,778        | (12.8            |      |
|        | F         | 837           | (72)         | 38               | (3)        | 90                  | (8)         | 200        | (17)         | 0         | (0)        | 1,165        | (8.4             |      |
|        | G         | 36            | (82)         | 1                | (2)        | 4                   | (9)         | 3          | (7)          | 0         | (0)        | 44           | (0.3             |      |
|        | Н         | 210           | (68)         | 7                | (2)        | 11                  | (4)         | 68         | (22)         | 12        | (4)        | 308          | (2.2             |      |
|        | 1         | 545           | (63)         | 14               | (2)        | 38                  | (4)         | 239        | (28)         | 23        | (3)        | 859          | (6.2             |      |
|        | J         | 12            | (15)         | 3                | (4)        | 0                   | (0)         | 67         | (82)         | 0         | (0)        | 82           | (0.6             |      |
|        | к         | 501           | (57)         | 23               | (3)        | 40                  | (5)         | 315        | (36)         | 4         | (0)        | 883          | (6.4             |      |
|        | L         | 116           | (51)         | 38               | (17)       | 24                  | (11)        | 48         | (21)         | 0         | (0)        | 226          | (1.0             |      |
|        | M         | 175           | (47)         | 17               | (5)        | 29                  | (8)         | 151        | (40)         | 1         | (0)        | 373          | (2.7             |      |
|        | N<br>O    | 197<br>337    | (58)<br>(61) | 23<br>23         | (7)        | 43<br>51            | (13)<br>(9) | 74<br>142  | (22)         | 0         | (0)<br>(0) | 337<br>553   | (2.4<br>(4.0     |      |
|        | P         | 812           | (83)         | 6                | (4)        | 8                   | (1)         | 142        | (15)         | 5         | (1)        | 982          | (4.)             |      |
|        | Q         | 174           | (32)         | 56               | (10)       | 53                  | (10)        | 263        | (48)         | 1         | (0)        | 547          | (4.0             |      |
|        | R         | 422           | (72)         | 11               | (2)        | 57                  | (10)        | 95         | (16)         | 0         | (0)        | 585          | (4.              |      |
|        | S         | 43            | (26)         | 20               | (12)       | 16                  | (10)        | 88         | (53)         | 0         | (0)        | 167          | (1.              |      |
|        | T         | 91            | (25)         | 30               | (8)        | 28                  | (8)         | 217        | (59)         | 0         | (0)        | 366          | (2.              |      |
|        | U         | 187           | (48)         | 35               | (9)        | 74                  | (19)        | 96         | (24)         | 0         | (0)        | 392          | (2.8             |      |
|        | V         | 772           | (79)         | 2                | (0)        | 164                 | (17)        | 37         | (4)          | 8         | (1)        | 983          | (7.              |      |
|        | w         | 463           | (71)         | 15               | (2)        | 56                  | (9)         | 113        | (17)         | 1         | (0)        | 648          | (4.              |      |
|        | X         | 405           | (42)         | 28               | (3)        | 95                  | (10)        | 428        | (44)         | 8         | (1)        | 964          | (7.              |      |
|        | Y         | 13            | (65)         | 2                | (10)       | 1                   | (5)         | 4          | (20)         | 0         | (0)        | 20           | (0.′             |      |
| 2004 T | otal      | 8,344         | (60.3)       | 560              | (4.0)      | 1,229               | (8.9)       | 3,639      | (26.3)       | 66        | (0.5)      | 13,838       |                  |      |
| 2005   | A<br>B    | 150<br>25     | (36)<br>(11) | 19<br>14         | (5)<br>(6) | 21<br>4             | (5)<br>(2)  | 230<br>189 | (55)<br>(81) | 0         | (0)<br>(0) | 420<br>233   | (3.<br>(1.       |      |
|        | C         | 191           | (70)         | 14               | (6)        | 4                   | (2)         | 38         | (14)         | 16        | (6)        | 233          | (1.              |      |
|        | D         | 400           | (69)         | 23               | (4)        | 38                  | (7)         | 115        | (14)         | 4         | (1)        | 580          | (1.              |      |
|        | E         | 1,175         | (78)         | 41               | (3)        | 133                 | (9)         | 166        | (11)         | 0         | (0)        | 1,515        | (10.8            |      |
|        | F         | 822           | (73)         | 30               | (3)        | 89                  | (8)         | 182        | (16)         | 0         | (0)        | 1,123        | (8.0             |      |
|        | G         | 38            | (76)         | 2                | (4)        | 3                   | (6)         | 7          | (14)         | 0         | (0)        | 50           | (0.4             |      |
|        | H         | 229           | (68)         | 9                | (3)        | 13                  | (4)         | 71         | (21)         | 15        | (4)        | 337          | (2.4             |      |
|        | I         | 559           | (66)         | 26               | (3)        | 40                  | (5)         | 218        | (26)         | 10        | (1)        | 853          | (6. <sup>-</sup> |      |
|        | J         | 27            | (28)         | 8                | (8)        | 2                   | (2)         | 58         | (60)         | 1         | (1)        | 96           | (o.7             |      |
|        | К         | 475           | (54)         | 23               | (3)        | (3)                 | 58          | (7)        | 324          | (37)      | 4          | (0)          | 884              | (6.3 |
|        | L         | 129           | (47)         | 32               | (12)       | 34                  | (12)        | 79         | (29)         | 0         | (0)        | 274          | (1.9             |      |
|        | м         | 178           | (50)         | 16               | (5)        | 34                  | (10)        | 126        | (35)         | 1         | (0)        | 355          | (2.5             |      |
|        | N         | 208           | (71)         | 7                | (2)        | 37                  | (13)        | 43         | (15)         | 0         | (0)        | 295          | (2.1             |      |
|        | 0         | 333           | (54)         | 28               | (5)        | 96                  | (16)        | 158        | (26)         | 0         | (0)        | 615          | (4.4             |      |
|        | P<br>Q    | 830           | (82)         | 13<br>41         | (1)        | 36                  | (4)         | 133        | (13)         | 5         | (0)        | 1,017        | (7.2             |      |
|        | R         | 196<br>444    | (34) (67)    | 10               | (7)        | 50<br>75            | (9)         | 294<br>136 | (51)         | 0         | (0)<br>(0) | 581<br>665   | (4.1<br>(4.1     |      |
|        | S         | 61            | (34)         | 6                | (2)        | 10                  | (11)        | 103        | (57)         | 0         | (0)        | 180          | (1.              |      |
|        | т         | 105           | (25)         | 58               | (14)       | 34                  | (8)         | 216        | (52)         | 0         | (0)        | 413          | (2.9             |      |
|        | Ŭ         | 219           | (54)         | 27               | (7)        | 66                  | (16)        | 96         | (24)         | 0         | (0)        | 408          | (2.9             |      |
|        | V         | 0             | (0)          | 0                | (0)        | 0                   | (0)         | 0          | (0)          | 908       | (100)      | 908          | (6.              |      |
|        | w         | 424           | (60)         | 32               | (5)        | 95                  | (14)        | 150        | (21)         | 0         | (0)        | 701          | (5.              |      |
|        | Х         | 409           | (46)         | 15               | (2)        | 45                  | (5)         | 344        | (39)         | 78        | (9)        | 891          | (6.:             |      |
|        | Y         | 186           | (48)         | 4                | (1)        | 13                  | (3)         | 188        | (48)         | 0         | (0)        | 391          | (2.8             |      |
| 2005 T | otal      | 7,813         | (55.6)       | 494              | (3.5)      | 1,042               | (7.4)       | 3,664      | (26.1)       | 1,043     | (7.4)      | 14,056       |                  |      |
| 2006   | Α         | 163           | (36)         | 17               | (4)        | 16                  | (4)         | 252        | (56)         | 1         | (0)        | 449          | (3.              |      |
|        | B         | 8             | (4)          | 28               | (12)       | 6                   | (3)         | 183        | (81)         | 1         | (0)        | 226          | (1.              |      |
|        | C<br>D    | 209           | (69)         | 13               | (4)        | 21                  | (7)         | 51<br>99   | (17)         | 7         | (2)        | 301<br>571   | (2.              |      |
|        | E         | 385<br>1,287  | (67)         | 25<br>34         | (4)        | 59<br>114           | (10)        |            | (17)         | 3         | (1)        | 571<br>1,600 | (4.              |      |
|        | F         | 1,287         | (80)<br>(71) | 34<br>22         | (2)<br>(2) | 114<br>86           | (7)<br>(8)  | 165<br>206 | (10)<br>(19) | 0         | (0)<br>(0) | 1,600        | (11.)<br>(7.)    |      |
|        | G         | 30            | (83)         | 0                | (2)        | 4                   | (11)        | 200        | (19)         | 0         | (0)        | 36           | (7.              |      |
|        | Н         | 206           | (65)         | 7                | (0)        | 22                  | (7)         | 70         | (22)         | 10        | (3)        | 315          | (0.              |      |
|        | 1         | 537           | (59)         | 24               | (2)        | 49                  | (5)         | 278        | (31)         | 21        | (2)        | 909          | (6.              |      |
|        | J         | 22            | (30)         | 4                | (5)        | 3                   | (4)         | 44         | (60)         | 0         | (0)        | 73           | (0.              |      |
|        | ĸ         | 508           | (56)         | 20               | (2)        | 47                  | (5)         | 331        | (36)         | 1         | (0)        | 907          | (6.              |      |
|        | L         | 135           | (45)         | 35               | (12)       | 36                  | (12)        | 93         | (31)         | 0         | (0)        | 299          | (2.              |      |
|        | М         | 211           | (52)         | 18               | (4)        | 26                  | (6)         | 149        | (37)         | 1         | (0)        | 405          | (2.              |      |
|        | N         | 190           | (69)         | 7                | (3)        | 41                  | (15)        | 36         | (13)         | 1         | (0)        | 275          | (1.              |      |
|        | 0         | 364           | (56)         | 35               | (5)        | 110                 | (17)        | 146        | (22)         | 0         | (0)        | 655          | (4.              |      |
|        | P         | 834           | (76)         | 25               | (2)        | 33                  | (3)         | 208        | (19)         | 2         | (0)        | 1,102        | (7.              |      |
|        | Q         | 180           | (36)         | 33               | (7)        | 34                  | (7)         | 255        | (51)         | 1         | (0)        | 503          | (3.              |      |
|        | R         | 462           | (70)         | 23               | (4)        | 57                  | (9)         | 114        | (17)         | 0         | (0)        | 656          | (4.              |      |
|        | S         | 65<br>126     | (35)         | 19               | (10)       | 11<br>53            | (6)         | 93<br>196  | (49)         | 0         | (0)        | 188          | (1.              |      |
|        | T<br>U    | 126<br>162    | (29)         | 67<br>19         | (15)       | 53<br>61            | (12)        | 196<br>125 | (44) (34)    | 0         | (0)<br>(0) | 442<br>367   | (3.<br>(2.       |      |
|        | V         | 713           | (44)         | 59               | (6)        | 161                 | (17)        | 125        | (34)         | 0         | (0)        | 1,046        | (2.<br>(7.       |      |
|        | w         | 382           | (60)         | 24               | (6)        | 141                 | (15)        | 95         | (11)         | 0         | (0)        | 642          | (7.              |      |
|        | X         | 394           | (45)         | 13               | (4)        | 36                  | (22)        | 315        | (36)         | 119       | (14)       | 877          | (4.              |      |
|        | Y         | 195           | (49)         | 7                | (1)        | 25                  | (4)         | 170        | (43)         | 0         | (0)        | 397          | (0.              |      |
| 2006 T |           | 8,540         | (59.6)       | 578              | (4.0)      | 1,252               | (8.7)       | 3,789      | (26.4)       | 168       | (1.2)      | 14,327       | , -              |      |
|        |           | 1             |              |                  |            |                     |             |            |              |           |            |              |                  |      |

Note: Birmingham Children's Hospital did not supply intervention data for 2005

Figure 31a Percentage of children receiving invasive ventilation by 2004 SHA in England and Wales, 2004 and 2006

# Legend



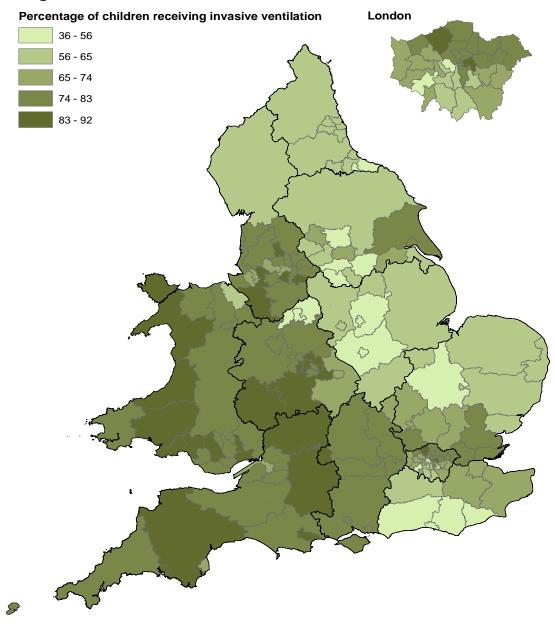

© Crown Copyright/database right 2007. An Ordnance Survey/EDINA supplied service.

Note: Birmingham Children's Hospital did not supply intervention data for 2005, so data for 2004 and 2006 only are presented.

Figure 31b Percentage of children receiving invasive ventilation by 2006 SHA in England and Wales, 2004 and 2006

# Legend




Percentage of children receiving invasive ventilation

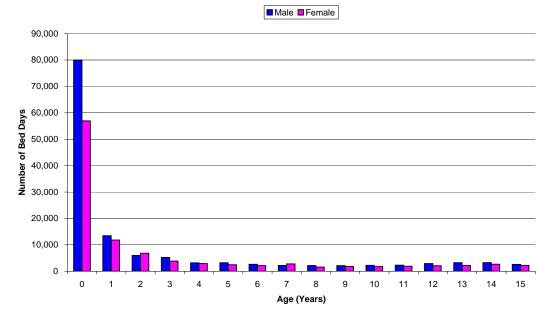
© Crown Copyright/database right 2007. An Ordnance Survey/EDINA supplied service.

Note: Birmingham Children's Hospital did not supply intervention data for 2005, so data for 2004 and 2006 only are presented.

Figure 31c Percentage of children receiving invasive ventilation by 2006 PCO in England and Wales, 2004 and 2006

# Legend




© Crown Copyright/database right 2007. An Ordnance Survey/EDINA supplied service.

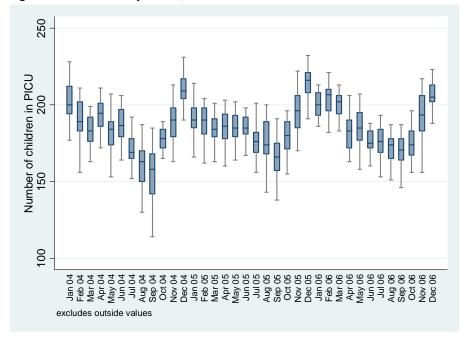
Note: Birmingham Children's Hospital did not supply intervention data for 2005, so data for 2004 and 2006 only are presented.

## Table 32 Bed days by age and sex, 2004 - 2006

| Age (Years) | Mal        | е      | Fema       | ale        | Ambig | juous | Unkn      | lown | Tota    | al     |
|-------------|------------|--------|------------|------------|-------|-------|-----------|------|---------|--------|
|             | n          | %      | n          | %          | n     | %     | n         | %    | n       | %      |
|             |            |        |            |            |       |       |           |      |         |        |
| 0           | 79,948     | (58)   | 56,949     | (42)       | 48    | (0)   | 186       | (0)  | 137,131 | (56.4) |
| 1           | 13,457     | (53)   | 11,804     | (47)       | 5     | (0)   | 26        | (0)  | 25,292  | (10.4) |
| 2           | 5,984      | (47)   | 6,821      | (53)       | 0     | (0)   | 14        | (0)  | 12,819  | (5.3)  |
| 3           | 5,257      | (57)   | 3,850      | (42)       | 35    | (0)   | 5         | (0)  | 9,147   | (3.8)  |
| 4           | 3,188      | (52)   | 2,921      | (48)       | 0 (0) |       | 4         | (0)  | 6,113   | (2.5)  |
| 5           | 3,210 (57) |        | 2,457      | 2,457 (43) |       | 0 (0) |           | (0)  | 5,679   | (2.3)  |
| 6           | 2,624 (55) |        | 2,128 (45) |            | 1     | (0)   | 3         | (0)  | 4,756   | (2.0)  |
| 7           | 2,212      | (44)   | 2,798      | 2,798 (56) |       | 0 (0) |           | (0)  | 5,012   | (2.1)  |
| 8           | 2,145      | (58)   | 1,562 (42) |            | 0     | 0 (0) |           | (0)  | 3,707   | (1.5)  |
| 9           | 2,112      | (54)   | 1,825      | (46)       | 0     | (0)   | 0         | (0)  | 3,937   | (1.6)  |
| 10          | 2,237      | (56)   | 1,745      | (44)       | 0     | (0)   | 0         | (0)  | 3,982   | (1.6)  |
| 11          | 2,309      | (55)   | 1,896      | (45)       | 0     | (0)   | 0         | (0)  | 4,205   | (1.7)  |
| 12          | 2,894      | (58)   | 2,102      | (42)       | 0     | (0)   | 0         | (0)  | 4,996   | (2.1)  |
| 13          | 3,252      | (60)   | 2,177      | (40)       | 0     | (0)   | 4         | (0)  | 5,433   | (2.2)  |
| 14          | 3,274      | (55)   | 2,667      | (45)       | 0     | (0)   | 5         | (0)  | 5,946   | (2.4)  |
| 15          | 2,609      | (54)   | 2,233      | 2,233 (46) |       | 0 (0) |           | (0)  | 4,842   | (2.0)  |
| Total       | 136,712    | (56.3) | 105,935    | (43.6)     | 89    | (0.0) | 261 (0.1) |      | 242,997 |        |

Figure 32 Bed days by age and sex, 2004 - 2006




## PICANet National Report 2004 - 2006

| Table .     | 55 Deu uays b                               |                     |                |                     |                |                |                |                   |                |                    |                |  |  |  |  |
|-------------|---------------------------------------------|---------------------|----------------|---------------------|----------------|----------------|----------------|-------------------|----------------|--------------------|----------------|--|--|--|--|
| Year        | Age Group (*<br>NHS Trust <1 1-4<br>n % n % |                     |                |                     |                |                | 0<br>%         | 11-'<br>n         | 15<br>%        | Tota<br>n          | 1<br>%         |  |  |  |  |
| 2004        | Α                                           | 743                 | (36)           | 557                 | (27)           | 452            | (22)           | 327               | (16)           | 2,079              | (2.6)          |  |  |  |  |
|             | В                                           | 233                 | (43)           | 154                 | (29)           |                |                | 72                | (13)           | 539                | (0.7)          |  |  |  |  |
|             | C<br>D                                      | 784<br>2,153        | (54)<br>(57)   | 307<br>781          | (21)<br>(21)   | 166<br>356     | (11)<br>(9)    | 201<br>507        | (14)<br>(13)   | 1,458<br>3,797     | (1.8)<br>(4.7) |  |  |  |  |
|             | E                                           | 7,887               | (61)           | 2,504               | (21)           | 965            | (8)            | 1,479             | (13)           | 12,835             | (16.0)         |  |  |  |  |
|             | F                                           | 3,401               | (67)           | 945                 | (19)           | 433            | (9)            | 303               | (6)            | 5,082              | (6.3)          |  |  |  |  |
|             | G<br>H                                      | 43<br>474           | (25)<br>(29)   | 53<br>601           | (31)<br>(37)   | 44<br>338      | (26)<br>(21)   | 32<br>221         | (19)<br>(14)   | 172<br>1,634       | (0.2)<br>(2.0) |  |  |  |  |
|             | 1                                           | 2,817               | (23)           | 1,080               | (22)           | 552            | (11)           | 478               | (14)           | 4,927              | (6.1)          |  |  |  |  |
|             | J                                           | 99                  | (53)           | 47                  | (25)           | 24             | (13)           | 18                | (10)           | 188                | (0.2)          |  |  |  |  |
|             | K<br>L                                      | 3,720               | (69)           | 624<br>444          | (11)           | 594            | (11)           | 489               | (9)            | 5,427              | (6.7)          |  |  |  |  |
|             | M                                           | 574<br>678          | (43)           | 444                 | (33)           | 145<br>284     | (11)<br>(17)   | 164<br>272        | (12)<br>(17)   | 1,327<br>1,637     | (1.7)<br>(2.0) |  |  |  |  |
|             | N                                           | 1,080               | (57)           | 472                 | (25)           | 104            | (5)            | 253               | (13)           | 1,909              | (2.4)          |  |  |  |  |
|             | 0                                           | 2,201               | (62)           | 844                 | (24)           | 338            | (9)            | 177               | (5)            | 3,560              | (4.4)          |  |  |  |  |
|             | P<br>Q                                      | 4,039               | (63)<br>(56)   | 1,469<br>896        | (23)           | 396<br>286     | (6)<br>(8)     | 483<br>344        | (8)<br>(10)    | 6,387<br>3,463     | (7.9)<br>(4.3) |  |  |  |  |
|             | R                                           | 1,777               | (54)           | 619                 | (19)           | 285            | (9)            | 583               | (18)           | 3,264              | (4.1)          |  |  |  |  |
|             | S                                           | 287                 | (27)           | 155                 | (15)           | 90             | (9)            | 513               | (49)           | 1,045              | (1.3)          |  |  |  |  |
|             | T<br>U                                      | 648<br>1,509        | (38)           | 539<br>849          | (31)<br>(28)   | 200<br>442     | (12)<br>(15)   | 327<br>209        | (19)<br>(7)    | 1,714<br>3,009     | (2.1)<br>(3.7) |  |  |  |  |
|             | v                                           | 3,420               | (57)           | 1,370               | (23)           | 668            | (11)           | 577               | (10)           | 6,035              | (7.5)          |  |  |  |  |
|             | W                                           | 3,106               | (67)           | 680                 | (15)           | 536            | (12)           | 293               | (6)            | 4,615              | (5.7)          |  |  |  |  |
|             | X<br>Y                                      | 2,637               | (62)           | 698                 | (16)           | 393            | (9)            | 522               | (12)           | 4,250              | (5.3)          |  |  |  |  |
| 2004 T      |                                             | 33<br><b>46,280</b> | (52)<br>(57.6) | 15<br><b>17,106</b> | (23)<br>(21.3) | 7<br>8,178     | (11)<br>(10.2) | 9<br><b>8,853</b> | (14)<br>(11.0) | 64<br>80,417       | (0.1)          |  |  |  |  |
| 2005        | A                                           | 731                 | (38)           | 379                 | (20)           | 611            | (32)           | 207               | (11)           | 1,928              | (2.4)          |  |  |  |  |
|             | В                                           | 219                 | (38)           | 144                 | (25)           | 52             | (9)            | 163               | (28)           | 578                | (0.7)          |  |  |  |  |
|             | C<br>D                                      | 690<br>1,696        | (48)<br>(45)   | 368<br>875          | (26)<br>(23)   | 178<br>574     | (12)           | 200<br>600        | (14)<br>(16)   | 1,436<br>3,745     | (1.8)<br>(4.6) |  |  |  |  |
|             | E                                           | 6,419               | (60)           | 2,251               | (21)           | 1,239          | (12)           | 821               | (8)            | 10,730             | (13.2)         |  |  |  |  |
|             | F                                           | 3,385               | (63)           | 1,208               | (23)           | 453            | (8)            | 295               | (6)            | 5,341              | (6.6)          |  |  |  |  |
|             | G<br>H                                      | 61<br>781           | (30) (45)      | 69<br>462           | (34)           | 28<br>192      | (14)           | 44<br>317         | (22)<br>(18)   | 202<br>1,752       | (0.2)<br>(2.2) |  |  |  |  |
|             | ï                                           | 2,550               | (54)           | 1,204               | (26)           | 474            | (10)           | 489               | (10)           | 4,717              | (5.8)          |  |  |  |  |
|             | J                                           | 101                 | (52)           | 50                  | (26)           | 23             | (12)           | 22                | (11)           | 196                | (0.2)          |  |  |  |  |
|             | K<br>L                                      | 3,760               | (68)           | 994                 | (18)           | 390            | (7)            | 407               | (7)            | 5,551<br>1,431     | (6.8)          |  |  |  |  |
|             | M                                           | 735<br>803          | (51)<br>(36)   | 271<br>749          | (19)<br>(34)   | 196<br>325     | (14)<br>(15)   | 229<br>328        | (16)<br>(15)   | 2,205              | (1.8)<br>(2.7) |  |  |  |  |
|             | N                                           | 845                 | (52)           | 373                 | (23)           | 174            | (11)           | 219               | (14)           | 1,611              | (2.0)          |  |  |  |  |
|             | O<br>P                                      | 3,184               | (75)           | 634                 | (15)           | 249            | (6)            | 168               | (4)            | 4,235              | (5.2)          |  |  |  |  |
|             | P<br>Q                                      | 4,031<br>1,842      | (63)<br>(47)   | 1,457<br>1,046      | (23)<br>(27)   | 418<br>623     | (7)<br>(16)    | 483<br>436        | (8)<br>(11)    | 6,389<br>3,947     | (7.9)<br>(4.9) |  |  |  |  |
|             | R                                           | 1,730               | (54)           | 511                 | (16)           | 458            | (14)           | 483               | (15)           | 3,182              | (3.9)          |  |  |  |  |
|             | S<br>T                                      | 466                 | (45)           | 170                 | (16)           | 88             | (8)            | 319               | (31)           | 1,043              | (1.3)          |  |  |  |  |
|             | U                                           | 441<br>1,260        | (26)<br>(48)   | 602<br>853          | (35)<br>(32)   | 354<br>390     | (21)<br>(15)   | 299<br>131        | (18)<br>(5)    | 1,696<br>2,634     | (2.1)<br>(3.2) |  |  |  |  |
|             | V                                           | 3,500               | (56)           | 1,616               | (26)           | 550            | (9)            | 573               | (9)            | 6,239              | (7.7)          |  |  |  |  |
|             | W                                           | 2,081               | (49)           | 993                 | (24)           | 848            | (20)           | 303               | (7)            | 4,225              | (5.2)          |  |  |  |  |
|             | X<br>Y                                      | 2,782<br>993        | (69)<br>(47)   | 584<br>424          | (14)<br>(20)   | 387<br>356     | (10)<br>(17)   | 290<br>318        | (7)<br>(15)    | 4,043<br>2,091     | (5.0)<br>(2.6) |  |  |  |  |
| 2005 T      |                                             | 45,086              | (55.6)         | 18,287              | (22.5)         | 9,630          | (11.9)         | 8,144             | (10.0)         | 81,147             | (2.0)          |  |  |  |  |
| 2006        | Α                                           | 732                 | (35)           | 436                 | (21)           | 647            | (31)           | 289               | (14)           | 2,104              | (2.6)          |  |  |  |  |
|             | B<br>C                                      | 211<br>545          | (38)           | 97                  | (17)           | 69             | (12)           | 182               | (33)           | 559<br>1,425       | (0.7)          |  |  |  |  |
|             | D                                           | 2,195               | (38)<br>(52)   | 350<br>975          | (25)<br>(23)   | 268<br>524     | (19)<br>(12)   | 262<br>548        | (18)<br>(13)   | 4,242              | (1.7)<br>(5.2) |  |  |  |  |
|             | E                                           | 6,963               | (66)           | 1,820               | (17)           | 954            | (9)            | 871               | (8)            | 10,608             | (13.0)         |  |  |  |  |
|             | F                                           | 3,102               | (61)           | 1,137               | (22)           | 343            | (7)            | 512               | (10)           | 5,094              | (6.3)          |  |  |  |  |
|             | G<br>H                                      | 37<br>750           | (31)           | 32<br>572           | (27)<br>(34)   | 26<br>207      | (22)<br>(12)   | 24<br>167         | (20)<br>(10)   | 119<br>1,696       | (0.1)<br>(2.1) |  |  |  |  |
|             | I.                                          | 2,589               | (53)           | 1,435               | (29)           | 458            | (9)            | 393               | (8)            | 4,875              | (6.0)          |  |  |  |  |
|             | J                                           | 101                 | (65)           | 35                  | (22)           | 9              | (6)            | 11                | (7)            | 156                | (0.2)          |  |  |  |  |
|             | K<br>L                                      | 3,489<br>709        | (66)<br>(39)   | 850<br>397          | (16)<br>(22)   | 429<br>385     | (8)<br>(21)    | 481<br>337        | (9)<br>(18)    | 5,249<br>1,828     | (6.4)<br>(2.2) |  |  |  |  |
|             | M                                           | 534                 | (34)           | 491                 | (32)           | 245            | (16)           | 285               | (18)           | 1,555              | (1.9)          |  |  |  |  |
|             | N                                           | 987                 | (57)           | 465                 | (27)           | 147            | (8)            | 133               | (8)            | 1,732              | (2.1)          |  |  |  |  |
| N<br>O<br>P |                                             | 2,737<br>3,904      | (69)<br>(63)   | 799<br>1,323        | (20)<br>(21)   | 302<br>560     | (8)<br>(9)     | 142<br>424        | (4)<br>(7)     | 3,980<br>6,211     | (4.9)<br>(7.6) |  |  |  |  |
|             | Q                                           | 2,341               | (58)           | 703                 | (17)           | 564            | (14)           | 433               | (11)           | 4,041              | (5.0)          |  |  |  |  |
|             | R                                           | 1,961               | (63)           | 462                 | (15)           | 264            | (8)            | 437               | (14)           | 3,124              | (3.8)          |  |  |  |  |
|             | S<br>T                                      | 307                 | (33)           | 171                 | (19)           | 330            | (36)           | 115               | (12)           | 923<br>2 017       | (1.1)          |  |  |  |  |
|             | T<br>U                                      | 696<br>1,096        | (35)           | 569<br>696          | (28)<br>(30)   | 400<br>354     | (20)<br>(15)   | 352<br>175        | (17)<br>(8)    | 2,017<br>2,321     | (2.5)<br>(2.9) |  |  |  |  |
|             | V                                           | 3,816               | (57)           | 1,781               | (26)           | 477            | (10)           | 647               | (10)           | 6,721              | (8.3)          |  |  |  |  |
|             | W                                           | 2,346               | (54)           | 1,005               | (23)           | 571            | (13)           | 450               | (10)           | 4,372              | (5.4)          |  |  |  |  |
|             | X<br>Y                                      | 2,644<br>973        | (64)           | 803<br>574          | (19)<br>(24)   | 378<br>354     | (9)<br>(15)    | 308<br>447        | (7)<br>(19)    | 4,133<br>2,348     | (5.1)<br>(2.9) |  |  |  |  |
| 2006 T      |                                             | 45,765              | (56.2)         | 17,978              | (22.1)         | 9,265          | (11.4)         | 8,425             | (10.3)         | 81,433             | (2.5)          |  |  |  |  |
| Grand       | Total                                       | 137,131             | (56.4)         | 53,371              | (22.0)         | 27,073         | (11.1)         | 25,422            | (10.5)         | 242,997            |                |  |  |  |  |
|             |                                             | ,                   |                |                     | /              | , <del>.</del> | ,/             | ,                 | /              | , - <del>-</del> - |                |  |  |  |  |

Table 34 Bed census by month, 2004 - 2006

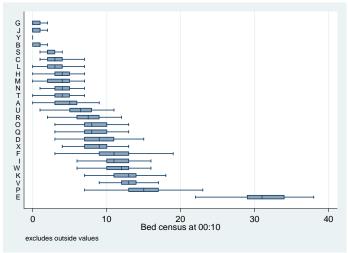
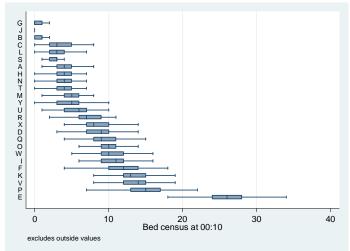
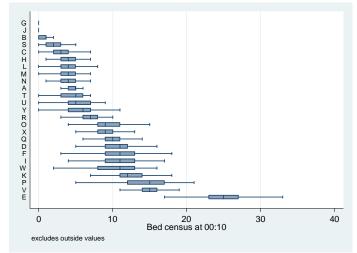

|      |       | Number in PICU<br>Median IQR |         |  |  |  |  |  |  |  |  |  |  |  |
|------|-------|------------------------------|---------|--|--|--|--|--|--|--|--|--|--|--|
| Year | Month | Median                       | IQR     |  |  |  |  |  |  |  |  |  |  |  |
|      |       |                              |         |  |  |  |  |  |  |  |  |  |  |  |
| 2004 | 1     | 200                          | 194-212 |  |  |  |  |  |  |  |  |  |  |  |
|      | 2     | 189                          | 183-202 |  |  |  |  |  |  |  |  |  |  |  |
|      | 3     | 183                          | 176-192 |  |  |  |  |  |  |  |  |  |  |  |
|      | 4     | 195                          | 186-201 |  |  |  |  |  |  |  |  |  |  |  |
|      | 5     | 184                          | 174-189 |  |  |  |  |  |  |  |  |  |  |  |
|      | 6     | 187                          | 179-197 |  |  |  |  |  |  |  |  |  |  |  |
|      | 7     | 169                          | 165-178 |  |  |  |  |  |  |  |  |  |  |  |
|      | 8     | 163                          | 150-170 |  |  |  |  |  |  |  |  |  |  |  |
|      | 9     | 158                          | 142-168 |  |  |  |  |  |  |  |  |  |  |  |
|      | 10    | 178                          | 172-184 |  |  |  |  |  |  |  |  |  |  |  |
|      | 11    | 190                          | 179-198 |  |  |  |  |  |  |  |  |  |  |  |
|      | 12    | 209                          | 204-217 |  |  |  |  |  |  |  |  |  |  |  |
|      |       |                              |         |  |  |  |  |  |  |  |  |  |  |  |
| 2005 | 1     | 190                          | 185-198 |  |  |  |  |  |  |  |  |  |  |  |
|      | 2     | 190                          | 181-198 |  |  |  |  |  |  |  |  |  |  |  |
|      | 3     | 184                          | 179-191 |  |  |  |  |  |  |  |  |  |  |  |
|      | 4     | 186                          | 178-194 |  |  |  |  |  |  |  |  |  |  |  |
|      | 5     | 185                          | 179-193 |  |  |  |  |  |  |  |  |  |  |  |
|      | 6     | 185                          | 181-192 |  |  |  |  |  |  |  |  |  |  |  |
|      | 7     | 176                          | 169-182 |  |  |  |  |  |  |  |  |  |  |  |
|      | 8     | 174                          | 168-189 |  |  |  |  |  |  |  |  |  |  |  |
|      | 9     | 166                          | 157-175 |  |  |  |  |  |  |  |  |  |  |  |
|      | 10    | 180                          | 171-189 |  |  |  |  |  |  |  |  |  |  |  |
|      | 11    | 196                          | 185-206 |  |  |  |  |  |  |  |  |  |  |  |
|      | 12    | 216                          | 208-221 |  |  |  |  |  |  |  |  |  |  |  |
|      |       |                              |         |  |  |  |  |  |  |  |  |  |  |  |
| 2006 | 1     | 200                          | 193-208 |  |  |  |  |  |  |  |  |  |  |  |
|      | 2     | 207                          | 196-210 |  |  |  |  |  |  |  |  |  |  |  |
|      | 3     | 202                          | 194-206 |  |  |  |  |  |  |  |  |  |  |  |
|      | 4     | 183                          | 172-190 |  |  |  |  |  |  |  |  |  |  |  |
|      | 5     | 185                          | 177-195 |  |  |  |  |  |  |  |  |  |  |  |
|      | 6     | 175                          | 172-183 |  |  |  |  |  |  |  |  |  |  |  |
|      | 7     | 176                          | 169-184 |  |  |  |  |  |  |  |  |  |  |  |
|      | 8     | 174                          | 165-178 |  |  |  |  |  |  |  |  |  |  |  |
|      | 9     | 171                          | 164-178 |  |  |  |  |  |  |  |  |  |  |  |
|      | 10    | 174                          | 167-183 |  |  |  |  |  |  |  |  |  |  |  |
|      | 11    | 194                          | 183-206 |  |  |  |  |  |  |  |  |  |  |  |
|      | 12    | 205                          | 202-213 |  |  |  |  |  |  |  |  |  |  |  |

Figure 34 Bed census by month, 2004 - 2006



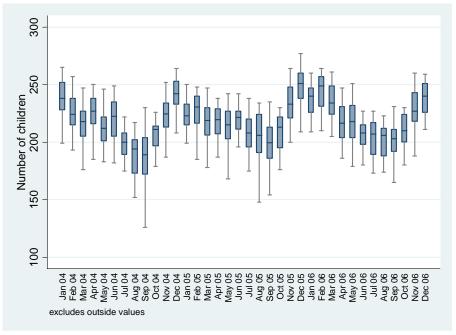

| Year | NHS Trust | Number i<br>Median | n PICU<br>IQR |
|------|-----------|--------------------|---------------|
| rear | NH5 TTUSI | Weulan             | IGAN          |
| 2004 | Α         | 5                  | 3-6           |
|      | B<br>C    | 1                  | 0-1<br>2-4    |
|      | D         | 9                  | 7-11          |
|      | E         | 31                 | 29-34         |
|      | F         | 11                 | 9-13          |
|      | G         | 0                  | 0-1           |
|      | H<br>I    | 4                  | 3-5<br>10-13  |
|      | J         | 0                  | 0-1           |
|      | к         | 13                 | 11-14         |
|      | L         | 3                  | 2-4           |
|      | M<br>N    | 4                  | 2-5<br>3-5    |
|      | 0         | 8                  | 7-10          |
|      | Ρ         | 15                 | 13-17         |
|      | Q         | 8                  | 7-10          |
|      | R<br>S    | 8                  | 6-9<br>2-3    |
|      | т         | 4                  | 3-5           |
|      | U         | 7                  | 5-8           |
|      | V         | 13                 | 12-14         |
|      | W<br>X    | 12<br>9            | 10-13<br>7-10 |
|      | Y         | 0                  | 0-0           |
|      |           |                    |               |
| 2005 | A         | 4                  | 3-5           |
|      | B<br>C    | 1                  | 0-1<br>2-5    |
|      | D         | 9                  | 7-10          |
|      | E         | 26                 | 24-28         |
|      | F         | 12                 | 10-14         |
|      | G<br>H    | 0                  | 0-1<br>3-5    |
|      | 1         | 11                 | 9-12          |
|      | J         | 0                  | 0-0           |
|      | ĸ         | 13                 | 12-15         |
|      | M         | 3                  | 2-4<br>4-6    |
|      | N         | 4                  | 3-5           |
|      | 0         | 10                 | 9-11          |
|      | Р         | 15                 | 13-17         |
|      | Q<br>R    | 9<br>7             | 8-11<br>6-9   |
|      | S         | 3                  | 2-3           |
|      | Т         | 4                  | 3-5           |
|      | U         | 6                  | 4-7           |
|      | V<br>W    | 14<br>10           | 12-15<br>9-12 |
|      | X         | 10                 | 9-12<br>7-10  |
|      | Y         | 5                  | 3-6           |
|      |           |                    |               |
| 2006 | A<br>B    | 5<br>1             | 4-5<br>0-1    |
|      | С         | 3                  | 0-1<br>2-4    |
|      | D         | 11                 | 9-12          |
|      | E         | 25                 | 23-27         |
|      | F         | 11                 | 9-13          |
|      | G<br>H    | 0                  | 0-0<br>3-5    |
|      | n<br>I    | 11                 | 9-13          |
|      | J         | 0                  | 0-0           |
|      | к         | 12                 | 11-14         |
|      | L         | 4                  | 3-5<br>3-5    |
|      | N         | 4                  | 3-5           |
|      | 0         | 9                  | 8-11          |
|      | P         | 15                 | 12-17         |
|      | Q<br>R    | 10<br>7            | 9-11          |
|      | R<br>S    | 2                  | 6-8<br>1-3    |
|      | Т         | 5                  | 3-6           |
|      | U         | 5                  | 4-7           |
|      | V<br>W    | 15<br>11           | 14-16<br>8-13 |
|      |           |                    |               |
|      | X         | 9                  | 8-10          |


## Figure 35a Bed census by NHS trust, 2004



#### Figure 35b Bed census by NHS trust, 2005




## Figure 35c Bed census by NHS trust, 2006



|      | bea aotivit | y by month, 2<br>Bed Activ | ity (Days)         |
|------|-------------|----------------------------|--------------------|
| Year | Month       | Median                     | ÌQŔ                |
|      |             |                            |                    |
| 2004 | 1           | 238                        | 228-252            |
|      | 2           | 224                        | 215-238            |
|      | 3           | 218                        | 205-227            |
|      | 4           | 227                        | 216-238            |
|      | 5           | 212                        | 201-222            |
|      | 6           | 223                        | 205-235            |
|      | 7           | 200                        | 189-208            |
|      | 8           | 194                        | 173-202            |
|      | 9           | 189                        | 172-204            |
|      | 10          | 211                        | 197-214            |
|      | 11          | 225                        | 213-234            |
| -    | 12          | 242                        | 233-253            |
| 2005 | 1           | 000                        | 215-233            |
| 2005 | 2           | 223<br>231                 | 215-233            |
|      | 2           | -                          |                    |
|      | 3<br>4      | 219                        | 206-230            |
|      | 4<br>5      | 220                        | 207-229            |
|      | 5<br>6      | 215<br>222                 | 203-227<br>211-227 |
|      | 7           |                            |                    |
|      | 8           | 208                        | 196-220            |
|      | 9           | 206                        | 191-224<br>186-213 |
|      | 9<br>10     | 200                        | 195-222            |
|      | 11          | 213                        | 221-248            |
|      | 12          | 253                        | 238-260            |
|      | 12          | 201                        | 230-200            |
| 2006 | 1           | 240                        | 226-247            |
|      | 2           | 249                        | 231-257            |
|      | 3           | 234                        | 224-249            |
|      | 4           | 217                        | 204-231            |
|      | 5           | 218                        | 204-232            |
|      | 6           | 208                        | 198-215            |
|      | 7           | 207                        | 189-217            |
|      | 8           | 206                        | 188-212            |
|      | 9           | 203                        | 192-211            |
|      | 10          | 210                        | 200-224            |
|      | 11          | 227                        | 218-243            |
|      | 12          | 240                        | 226-251            |

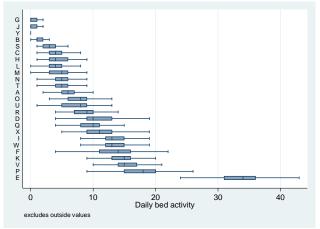
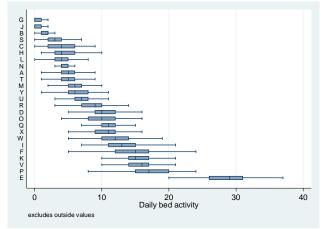
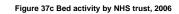
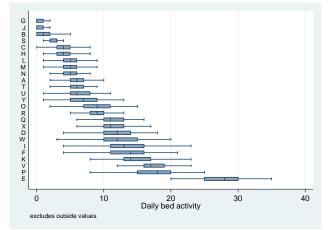

Table 36 Bed activity by month, 2004 - 2006


Figure 36 Bed activity by month, 2004 - 2006





| Table 37 | 7 Bed activity b | y NHS trust, 2<br>Bed Activity |               |
|----------|------------------|--------------------------------|---------------|
| Year     | NHS Trust        | Median                         | IQR           |
| 2004     | Α                | 6                              | 5-7           |
|          | В                | 1                              | 1-2           |
|          | C<br>D           | 4                              | 3-5<br>9-13   |
|          | E                | 34                             | 31-36         |
|          | F                | 14                             | 11-16         |
|          | G                | 0                              | 0-1           |
|          | H                | 4                              | 3-6<br>12-15  |
|          | J                | 0                              | 0-1           |
|          | к                | 15                             | 13-16         |
|          | L                | 4                              | 3-5           |
|          | M<br>N           | 5<br>5                         | 3-6<br>4-6    |
|          | 0                | 8                              | 6-9           |
|          | Р                | 18                             | 15-20         |
|          | Q                | 10                             | 8-11          |
|          | R<br>S           | 9                              | 7-10<br>2-4   |
|          | T                | 5                              | 2-4<br>4-6    |
|          | U                | 8                              | 5-9           |
|          | V                | 15                             | 14-17         |
|          | W                | 13                             | 12-15         |
|          | X<br>Y           | 11<br>0                        | 9-13<br>0-0   |
|          |                  | v                              | 00            |
| 2005     | Α                | 5                              | 4-6           |
|          | B<br>C           | 2                              | 1-2<br>2-6    |
|          | D                | 10                             | 2-0<br>9-12   |
|          | E                | 29                             | 26-31         |
|          | F                | 15                             | 12-17         |
|          | G                | 0                              | 0-1           |
|          | H                | 4                              | 3-6<br>11-15  |
|          | J                | 0                              | 0-1           |
|          | к                | 15                             | 14-17         |
|          | L                | 4                              | 3-5           |
|          | M<br>N           | 6<br>4                         | 5-7<br>4-5    |
|          | 0                | 10                             | 8-12          |
|          | Р                | 17                             | 15-20         |
|          | Q                | 11                             | 10-12         |
|          | R<br>S           | 9                              | 7-10<br>2-4   |
|          | т                | 5                              | 4-6           |
|          | U                | 7                              | 6-8           |
|          | V                | 16                             | 14-17         |
|          | W<br>X           | 12<br>11                       | 10-14<br>9-12 |
|          | Y                | 6                              | 5-8           |
|          |                  |                                |               |
| 2006     | A<br>B           | 6                              | 5-7           |
|          | в<br>С           | 1                              | 0-2<br>3-5    |
|          | D                | 12                             | 10-14         |
|          | E                | 28                             | 25-30         |
|          | F                | 14                             | 11-16         |
|          | G<br>H           | 04                             | 0-1<br>3-5    |
|          | i.               | 13                             | 11-16         |
|          | J                | 0                              | 0-1           |
|          | к                | 14                             | 13-17         |
|          | L<br>M           | 5                              | 4-6<br>4-6    |
|          | N                | 5                              | 4-6           |
|          | 0                | 9                              | 7-11          |
|          | P                | 18                             | 15-20         |
|          | Q                | 11                             | 10-13         |
|          | R<br>S           | 9                              | 8-10<br>2-3   |
|          | T                | 6                              | 5-7           |
|          | U                | 6                              | 5-8           |
|          | V                | 17                             | 16-19         |
|          | w                | 12                             | 10-15         |
|          | х                | 11                             | 10-13         |


Figure 37a Bed activity by NHS trust, 2004











| Table | 38 Length of | stay by ag   | e and i           |               |              | 2006<br>p (Years) |            |                |              |  |
|-------|--------------|--------------|-------------------|---------------|--------------|-------------------|------------|----------------|--------------|--|
| Year  | NHS Trust    | <1<br>Median | IQR               | 1-4<br>Median |              | 5-10<br>Median    | )<br>IQR   | 11-1<br>Median | IQR          |  |
|       |              |              |                   |               |              |                   |            |                |              |  |
| 2004  | A<br>B       | 3            | 2-6<br>1-2        | 3             | 2-5<br>1-3   | 2                 | 2-5<br>1-2 | 2              | 2-3<br>1-2   |  |
|       | в<br>С       | 1<br>3.5     | 2-6               | 2             | 2-7          | 2<br>2.5          | 2-5        | 2              | 2-3          |  |
|       | D            | 3.5          | 2-0               | 3             | 2-7          | 2.5               | 2-5.5      | 3              | 2-5          |  |
|       | E            | 5            | 3-9               | 3             | 2-5          | 2                 | 2-5        | 2              | 2-6          |  |
|       | F            | 4            | 2-6               | 2             | 2-4          | 3                 | 2-5        | 2              | 2-3          |  |
|       | G            | 1            | 1-6               | 2             | 2-6.5        | 3                 | 3-7        | 3              | 2-4          |  |
|       | н            | 3            | 2-6               | 2.5           | 2-5          | 3                 | 2-5        | 3              | 2-5          |  |
|       | l<br>J       | 4            | 2-7<br>2-3        | 2             | 2-4<br>2-2   | 2                 | 2-4<br>1-2 |                | 2-4<br>1-2   |  |
|       | K            | 4            | 2-3               | 2             | 2-2          | 3                 | 2-4        | 2              | 2-5          |  |
|       | L            | 3            | 2-6               | 2             | 2-5          | 2                 | 2-3.5      | 2              | 2-3          |  |
|       | М            | 4            | 2-6               | 2             | 2-4          | 2                 | 2-5        | 2              | 2-4          |  |
|       | N            | 3            | 2-6               | 3             | 2-5          | 2                 | 2-3        | 3              | 2-7          |  |
|       | 0            | 5            | 2-8               | 3             | 2-5          | 2                 | 2-3        | 2              | 2-5          |  |
|       | P<br>Q       | 5            | 2-8<br>2-7        | 2             | 2-7<br>2-7   | 2                 | 2-4<br>2-4 | 2              | 2-4<br>2-4   |  |
|       | R            | 3            | 2-7<br>2-5<br>2-6 | 2             | 2-7          | 2                 | 2-4        | 2              | 2-4          |  |
|       | S            | 3            |                   | 2             | 1-3          | 2                 | 2-3        | 2              | 2-4          |  |
|       | т            | 2.5          | 2-4               | 2             | 2-5          | 2                 | 2-4        | 3              | 2-5          |  |
|       | U            | 5            | 3-9               | 3             | 2-8          | 2.5               | 2-5        | 3              | 2-5          |  |
|       | V            | 4            | 2-8               | 2             | 2-4          | 2                 | 2-6        | 2.5            | 2-5          |  |
|       | W<br>X       | 4            | 3-8<br>1-6        | 3             | 2-5<br>1-3   | 2.5<br>1          | 2-5<br>1-2 | 3<br>2         | 2-4          |  |
|       | Y            | 3<br>4       | 3-5               | 3.5           | 2-5          | 2                 | 1-2        | 4.5            | 1-3<br>2-7   |  |
|       |              |              |                   |               |              |                   |            |                |              |  |
| 2005  | A            | 3            | 2-5               | 2             | 2-4          | 2                 | 2-4        | 2              | 2-3          |  |
|       | B<br>C       | 2            | 1-3<br>2-7        | 2             | 1-2.5<br>2-8 | 2                 | 1-2<br>2-5 | 2              | 1-3<br>2-4   |  |
|       | D            | 4            | 2-7               | 4             | 2-0          | 3                 | 2-5        | 3              | 2-4          |  |
|       | E            | 5            | 3-8               | 3             | 2-6          | 3                 | 2-5        | 3              | 2-7          |  |
|       | F            | 4            | 2-6               | 3             | 2-4          | 3                 | 2-4        | 2              | 2-3.5        |  |
|       | G            | 3.5          | 2-6               | 6             | 2-8          | 2.5               | 2-4        | 2              | 2-3          |  |
|       | н            | 3            | 2-5               | 2             | 2-4          | 2                 | 2-4        | 3              | 2-6          |  |
|       | 1            | 3            | 2-6<br>1-2        | 2             | 2-5          | 2                 | 2-3<br>1-2 | 2              | 2-4<br>1-3   |  |
|       | J<br>K       | 2            | 2-8               | 2             | 1-2.5<br>2-5 | 2                 | 2-3        | 2              | 2-3          |  |
|       | L            | 4            | 3-8               | 2             | 2-5          | 2                 | 1-4.5      | 2              | 2-3          |  |
|       | М            | 3            | 2-7               | 2             | 2-6          | 3                 | 2-4        | 2              | 2-4          |  |
|       | N            | 4            | 2-7               | 2             | 2-4          | 2                 | 2-4        | 2              | 2-7          |  |
|       | 0            | 4            | 2-8               | 3             | 2-4          | 2                 | 2-3        | 2              | 2-3.5        |  |
|       | P<br>Q       | 4            | 2-7<br>2-7        | 2             | 2-5          | 2                 | 2-3<br>2-5 | 2              | 2-5<br>2-3.5 |  |
|       | R            | 3            | 2-7               | 2             | 2-5<br>2-4   | 3                 | 2-5        | 2              | 2-3.3        |  |
|       | S            | 3            | 2-8               | 2             | 1-4          | 2                 | 2-3.5      | 2              | 2-3          |  |
|       | т            | 2            | 2-5               | 2             | 2-3          | 2                 | 2-4        | 2              | 2-4          |  |
|       | U            | 4            | 2-8               | 3             | 2-6          | 3                 | 2-4        | 2              | 2-4          |  |
|       | V            | 4            | 2-8               | 2             | 2-4          | 2                 | 2-4        | 3              | 2-4          |  |
|       | W<br>X       | 4            | 3-7<br>1-7        | 3             | 2-5<br>1-3   | 3<br>2            | 2-6<br>1-3 | 2              | 2-3<br>1-2   |  |
|       | Y            | 4            | 3-7               | 3             | 2-6          | 3                 | 2-5.5      | 3              | 2-4          |  |
|       |              |              |                   |               |              |                   |            |                |              |  |
| 2006  | A<br>B       | 3            | 2-6<br>1-3        | 2             | 2-3<br>1-2   | 2                 | 2-5<br>1-2 | 2.5<br>2       | 2-4<br>1-3   |  |
|       | C            | 4            | 2-7               | 2             | 2-5          | 2                 | 2-5        | 2              | 2-3          |  |
|       | D            | 5            | 2-9               | 3             | 2-7          | 3                 | 2-8        | 3              | 2-6          |  |
|       | E            | 5            | 3-8               | 3             | 2-6          | 3                 | 2-7        | 3              | 2-6          |  |
|       | F            | 4            | 3-6               | 3             | 2-4          | 2                 | 2-4        | 2              | 2-3          |  |
|       | G            | 4            | 1-6               | 3             | 1-4          | 3                 | 2-3        | 3              | 2-5          |  |
|       | H<br>I       | 3            | 2-9               | 2             | 2-6          | 2                 | 2-4        | 2              | 2-4          |  |
|       | J            | 4            | 2-6<br>1-3        | 2             | 2-4<br>1-2   | 2                 | 2-3<br>1-2 | 2              | 2-3<br>2-2   |  |
|       | K            | 4            | 2-7               | 3             | 2-5          | 2                 | 2-3        | 2              | 2-2          |  |
|       | L            | 3.5          | 2-6.5             | 3             | 2-6          | 2                 | 2-3.5      | 2              | 2-3          |  |
|       | М            | 3            | 2-5               | 2             | 2-4          | 2                 | 2-3        | 2              | 2-4          |  |
|       | N            | 4            | 2-7               | 3             | 2-5.5        | 2                 | 2-3        | 2              | 2-4          |  |
|       | 0            | 4            | 2-7               | 3             | 2-6          | 2                 | 2-3        | 2              | 2-3          |  |
|       | P<br>Q       | 3            | 2-6<br>2-7        | 2             | 2-4<br>2-5   | 2                 | 2-3<br>2-5 | 2              | 2-4<br>2-5   |  |
|       | R            | 2            | 2-7               | 2             | 2-5          | 2                 | 2-3        | 2              | 2-5          |  |
|       | S            | 4            | 2-6               | 2             | 2-3          | 2                 | 1-3        | 2              | 2-4          |  |
|       | т            | 3            | 2-6               | 2             | 2-4          | 3                 | 2-4        | 3              | 2-6          |  |
|       | U            | 5            | 3-7               | 3             | 2-6          | 3                 | 2-5        | 3              | 2-6          |  |
|       |              | 4            | 2-7               | 2             | 2-5          | 2                 | 2-3        | 2              | 2-5          |  |
|       | V            |              |                   |               |              |                   | ~ -        |                | <b>•</b> •   |  |
|       | V<br>W<br>X  | 4 4 3        | 3-8<br>1-7        | 3<br>2        | 2-6<br>1-3   | 3<br>1            | 2-6<br>1-2 | 4              | 2-7<br>1-3   |  |

| Table 38 Length of sta | by age and NHS trust | . 2004 - 2006 |
|------------------------|----------------------|---------------|
|                        |                      |               |

|           |            |         |               |            |          |         |             |           |           |         |         | Diag  | nostic Gro |         |          |          |         |        |        |     |         |       |        |       |        |       |        |       |
|-----------|------------|---------|---------------|------------|----------|---------|-------------|-----------|-----------|---------|---------|-------|------------|---------|----------|----------|---------|--------|--------|-----|---------|-------|--------|-------|--------|-------|--------|-------|
| NHS Trust | Blood / ly | mphatic | Body wall and | d cavities | Cardiova | ascular | Endocrine / | metabolic | Gastroint | estinal | Infecti | on    | Multisy    | stem    | Musculos | skeletal | Neurolo | ogical | Oncole | ogy | Respira | atory | Traun  | na    | Othe   | ŧr    | Unkno  | wn    |
|           | Median     | IQR     | Median        | IQR        | Median   | IQR     | Median      | IQR       | Median    | IQR     | Median  | IQR   | Median     | IQR     | Median   | IQR      | Median  | IQR    | Median | IQR | Median  | IQR   | Median | IQR   | Median | IQR   | Median | IQR   |
|           |            |         |               |            |          |         |             |           |           |         |         |       |            |         |          |          |         |        |        |     |         |       |        |       |        |       |        |       |
| Α         | 2          | 1-5     | 2             | 1-4        | 3        | 2-4.5   | 2           | 2-4       | 2         | 2-3     | 4       | 2-6   | 3          | 2-8     | 2        | 2-3      | 2       | 2-4    |        |     | 4       | 2-7   | 3      | 2-5   | 2      | 2-4   | 2      | 1-5   |
| В         | 2          | 1.5-2.5 | 1             | 1-1        | 1        | 1-2     | 2           | 1.5-2     | 2         | 1-3     | 2       | 1-2   | 2          | 2-2     | 2        | 1-2      | 2       | 1-3    |        | 1-3 | 2       | 1-3   | 1      | 1-2   | 2      | 1-2   | 1      | 1-3   |
| С         | 3          | 2-7     | 2             | 2-5        | 3        | 2-6     | 3           | 2-7       | 3         | 2-4     | 4       | 3-7   | 4          | 2-20    | 2        | 2-2      | 2       | 2-4    | 2      |     | 4       | 2-8   | 2      | 2-5   | 2      | 2-3   | 0      | 0-0   |
| D         | 4          | 2-11.5  | 2             | 1-4        | 3        | 2-7     | 5           | 2-8       | 3         | 2-5     | 4       | 2-8   | 4          | 2-6     | 2        | 2-4      | 2       | 2-5    |        |     | 5       | 3-9   | 3      | 2-7   | 2      | 2-4   | 0      | 0-0   |
| E         | 4          | 2-9     | 6             | 3-11       | 4        | 2-7     | 4           | 2-8       | 4         | 2-10    | 4       | 2-7   | 4          | 1-7     | 2        | 2-2.5    | 3       | 2-5    | 3      | 2-6 | 5       | 3-9   | 3      | 2-6   | 3      | 2-6   | 0      | 0-0   |
| F         | 3          | 2.5-5.5 | 2             | 1-5        | 3        | 2-5     | 2           | 2-3       | 2         | 2-5     | 3       | 2-6   | 5          | 4-12    | 2        | 2-2      | 2       | 2-3    | 2      | 2-2 | 4       | 3-7   | 2.5    | 2-4   | 2      | 2-3   | 2.5    | 2-4   |
| G         | 0          | 0-0     | 0             | 0-0        | 1.5      | 1-5     | 1.5         | 1-2       | 1         | 1-2     | 2       | 1-7   | 0          | 0-0     | 0        | 0-0      | 4       | 2-7    | 1      | 1-2 | 3       | 1.5-5 |        | 2-4.5 | 2.5    | 2-3.5 | 0      | 0-0   |
| н         | 2          | 1-5     | 2             | 1-3        | 3.5      | 2-6     | 3           | 2-5       | 3         | 2-5     | 4       | 2-7   | 0          | 0-0     | 2        | 2-3      | 3       | 2-5    |        | 2-4 | 4       | 2-8   | 2      | 2-5   | 2      | 2-3   | 6      | 6-6   |
| 1         | 2.5        | 1-5.5   | 3             | 2-4        | 3        | 2-5     | 2           | 1-4       | 3         | 2-4     | 4       | 2-7   | 25         | 2-44    | 2        | 2-2      | 2       | 2-3    |        |     | 4       | 2-7   | 2      | 2-4   | 3      | 2-5   | 3      | 2-3   |
| J         | 2          | 1-2     | 2             | 1-3        | 1        | 1-1     | 2           | 1-3       | 2         | 2-3     | 2       | 1-3   | 0          | 0-0     | 0        | 0-0      | 1       | 1-2    | 1.5    | 1-2 | 2       | 1-3   | 2      | 1-3   | 2      | 1-2   | 3      | 2-4   |
| ĸ         | 5          | 2-17    | 5             | 2-12       | 3        | 2-7     | 2           | 2-6       | 3         | 2-6     | 3       | 2-5   | 5          | 2-9     | 2        | 2-3      | 2       | 2-3    |        | 2-3 | 4       | 2-8   | 2      | 2-4   | 2      | 2-4   | 1      | 1-1   |
| L         | 4          | 2.5-4   | 2             | 2-3        | 3        | 2-5     | 3.5         | 2-6.5     | 2         | 1-2     | 4       | 2-5.5 | 0          | 0-0     | 2        | 2-3      | 2       | 2-4    | 2.5    | 2-3 | 3       | 2-7   | 2.5    | 2-3   | 2      | 2-3   | 1      | 1-1   |
| M         | 5.5        | 4-8     | 2             | 2-4        | 3        | 2-6     | 2           | 2-3       | 2         | 2-3.5   | 4       | 2-5   | 10         | 2-18    | 2        | 2-3      | 2       | 2-4    |        |     | 3       | 2-6   | 3      | 2-7   | 2      | 2-4   | 0      | 0-0   |
| N         | 1.5        | 1-2     | 6             | 2-13       | 3        | 2-5     | 4           | 3-10      | 3         | 2-7     |         | 2-6.5 |            | 1.5-2.5 | 2        | 2-2      | 2       | 2-4    | 2      |     | 5       | 2-8   | 3      | 2-6   | 2      | 2-4   | 3      | 3-3   |
| 0         | 0          | 0-0     | 4             | 2.5-10     | 3        | 2-6     | 3           | 2-4       | 3         | 2-15    | 2       |       | 0          | 0-0     | 2        | 2-9      | 6.5     | 2-9    |        | 2-3 | 3       | 2-7   | 2      | 2-2   | 2      | 1-3   |        | 3-13  |
| Р         | 5          | 2-9     | 4             | 2-8        | 3        | 2-5     | 4           | 2-7       | 3         | 2-5     | 4       | 2-7   |            | 1.5-3.5 | 2        | 2-2      | 2       | 2-4    | 2      | 2-4 | 5       | 3-9   | 2      | 2-5   | 2      | 2-5   | 4      | 4-51  |
| Q         | 2          | 1.5-6.5 | 6             | 4-9        | 3        | 2-9     | 2           | 2-5       | 3         | 2-5     | 4       | 2-6   | 0          | 0-0     | 2        | 2-3      | 3       | 2-5    |        |     | 3       | 2-7   | 3      | 2-7   | 2      | 2-4   | 2      | 1.5-2 |
| R         | 1          | 1-4     | 2             | 1-3        | 2        | 2-4     | 2           | 1.5-4     | 2         | 2-3     | 3       | 2-5   | 4          | 1-4     | 2        | 2-2      | 2       | 2-5    |        | 1-3 | 4       | 2-7   | 3      | 2-9   |        | 1-3.5 | 0      | 0-0   |
| S         | 2          | 2-2     | 0             | 0-0        | 2        | 1-3     | 2           | 2-3       | 2         | 1-3     | 3       | 2-5   | 0          | 0-0     | 2        | 2-3      | 2       | 2-3    |        |     | 3       | 2-7   | 3      | 2-7   |        | 1-3   | 0      | 0-0   |
|           | 2          | 2-3     | 2             | 2-2        | 2        | 2-3     | 3.5         | 2.5-5     | 2         | 2-3     | 3       | 2-6   | 2          | 2-2.5   | 3        | 2-4      | 2       | 2-3    | 2      | 2-3 | 3       | 2-7   | 2.5    | 2-5   |        | 2-2.5 | 13     | 13-13 |
| U         | 2          | 2-5     | 3             | 3-8        | 3        | 2-6     | 3           | 2-6       | 3         | 2-6     | 6       |       | 0          | 0-0     | 0        | 0-0      | 2       | 2-3    |        | 1-1 | 4       | 2-9   | 2      | 2-2   |        | 1-4   | 5      | 3-9   |
| v         | 3          | 2-6     | 4             | 2-6        | 3        | 2-6     | 3           | 2-6.5     | 3         | 2-7     | 3       | 2-7   | 3          | 2-3     | 2        | 2-2      | 2       | 2-5    | 3      | 2-5 | 4       | 2-8   | 3      | 2-8   | 2      | 2-5   | 2      | 2-4   |
| w         | 5          | 2-8     | 4             | 2-6        | 3        | 2-5     | 3           | 2-4       | 3         | 2-8     | 4       | 2-7   | 0          | 0-0     | 2        | 2-5      | 3       | 2-7    | 3      | 2-4 | 5       | 3-8   | 5      | 2-9   | 3      | 2-4   | 3      | 2-3   |
| X         | 2          | 1-3     | 6             | 2-10       | 2        | 1-3     | 2           | 1.5-3.5   | 3         | 2-4     | 2       | 1-5   | 3.5        | 2-12    | 2        | 1-3      | 2       | 2-4    | 3      | 2-4 | 5       | 2-8   | 2      | 1-2   | 2      | 2-3   | 1.5    | 1-6   |
| Y         | 0          | 0-0     | 5             | 3-8        | 4        | 2-8     | 2           | 1-3.5     | 4         | 2-6     | 4       | 2-7   | 3          | 2-3     | 2        | 2-3      | 3       | 2-4    | 3      | 2-4 | 4       | 2-7   | 3      | 2-5.5 | 3      | 2-6   | 0      | 0-0   |

#### Table 39 Length of stay by primary diagnostic group and NHS trust, 2004 - 2006

| i able 4 | U Admission | s by lei   | ngth of     | stay by          | NHS t        | rust, 2004 - 20 |              | LOS Group   |                |              |                |             |              |             |                |                |              |                |                 |
|----------|-------------|------------|-------------|------------------|--------------|-----------------|--------------|-------------|----------------|--------------|----------------|-------------|--------------|-------------|----------------|----------------|--------------|----------------|-----------------|
| Year     | NHS Trust   | <1h<br>n % |             | 1h to <4h<br>n % |              | 4h to<br>n      | <12h<br>%    | 12h to<br>n |                | 1d to<br>n   | <3d<br>%       | 3d to<br>n  | o <7d<br>%   | 7d+<br>n %  |                | Unknown<br>n % |              | Total<br>n %   |                 |
|          |             |            |             |                  |              |                 |              |             |                |              |                |             |              |             |                |                |              |                |                 |
| 2004     | A<br>B      | 1<br>5     | (0)<br>(2)  | 18<br>59         | (4)<br>(21)  | 48<br>66        | (11)<br>(23) | 81<br>69    | (18)<br>(24)   | 156<br>71    | (35)<br>(25)   | 76<br>13    | (17)<br>(5)  | 63<br>2     | (14)           | 0              | (0)<br>(0)   | 443<br>285     | (3.2)<br>(2.1)  |
|          | С           | 0          | (0)         | 3                | (1)          | 14              | (5)          | 58          | (22)           | 88           | (33)           | 65          | (25)         | 36          | (14)           | 0              | (0)          | 264            | (1.9)           |
|          | D<br>E      | 0          | (0)<br>(0)  | 15<br>42         | (3)          | 43<br>117       | (7)          | 123<br>263  | (21)<br>(15)   | 155<br>532   | (27)           | 135<br>425  | (23)         | 113<br>399  | (19)<br>(22)   | 0              | (0)<br>(0)   | 584<br>1,778   | (4.2)<br>(12.8) |
|          | F           | 0          | (0)         | 27               | (2)          | 81              | (7)          | 165         | (13)           | 470          | (40)           | 310         | (27)         | 112         | (10)           | 0              | (0)          | 1,165          | (8.4)           |
|          | G           | 0          | (0)         | 2                | (5)          | 11              | (25)         | 5           | (11)           | 13           | (30)           | 10          | (23)         | 3           | (7)            | 0              | (0)          | 44             | (0.3            |
|          | H           | 0          | (0)<br>(0)  | 13<br>21         | (4)          | 31<br>42        | (10)<br>(5)  | 52<br>205   | (17)<br>(24)   | 103<br>274   | (33)           | 60<br>177   | (19) (21)    | 49<br>131   | (16)<br>(15)   | 0              | (0)<br>(1)   | 308<br>859     | (2.2)           |
|          | J           | 0          | (0)         | 4                | (5)          | 19              | (23)         | 22          | (27)           | 32           | (39)           | 3           | (4)          | 2           | (2)            | 0              | (0)          | 82             | (0.6)           |
|          | К<br>L      | 0          | (0)         | 41<br>9          | (5)          | 84              | (10)         | 158         | (18)           | 244<br>74    | (28)           | 192<br>42   | (22)         | 164<br>30   | (19)           | 0              | (0)          | 883<br>226     | (6.4)           |
|          | M           | 0          | (0)<br>(0)  | 6                | (4)          | 16<br>27        | (7)          | 55<br>100   | (24)           | 114          | (33)<br>(31)   | 84          | (19) (23)    | 42          | (13)<br>(11)   | 0              | (0)<br>(0)   | 373            | (1.6)<br>(2.7)  |
|          | N           | 1          | (0)         | 10               | (3)          | 29              | (9)          | 65          | (19)           | 113          | (34)           | 69          | (20)         | 50          | (15)           | 0              | (0)          | 337            | (2.4)           |
|          | O<br>P      | 5          | (1)<br>(0)  | 13<br>19         | (2)<br>(2)   | 30<br>59        | (5)<br>(6)   | 72<br>168   | (13)<br>(17)   | 198<br>303   | (36)<br>(31)   | 128<br>228  | (23)         | 107<br>203  | (19)<br>(21)   | 0              | (0)<br>(0)   | 553<br>982     | (4.0)<br>(7.1)  |
|          | Q           | 0          | (0)         | 3                | (1)          | 43              | (8)          | 135         | (25)           | 152          | (28)           | 124         | (23)         | 90          | (16)           | 0              | (0)          | 547            | (4.0)           |
|          | R           | 1          | (0)         | 29               | (5)          | 50              | (9)          | 148         | (25)           | 176          | (30)           | 109         | (19)         | 72          | (12)           | 0              | (0)          | 585            | (4.2)           |
|          | S<br>T      | 0          | (0)<br>(0)  | 4<br>12          | (2)<br>(3)   | 21<br>28        | (13)<br>(8)  | 40<br>74    | (24)<br>(20)   | 54<br>146    | (32)           | 30<br>55    | (18)<br>(15) | 18<br>51    | (11)<br>(14)   | 0              | (0)<br>(0)   | 167<br>366     | (1.2)<br>(2.6)  |
|          | U           | 0          | (0)         | 8                | (2)          | 23              | (6)          | 60          | (15)           | 113          | (29)           | 95          | (24)         | 93          | (24)           | 0              | (0)          | 392            | (2.8)           |
|          | V           | 0          | (0)         | 13               | (1)          | 55<br>25        | (6)          | 228         | (23)           | 322          | (33)           | 174         | (18)         | 187         | (19)           | 4              | (0)          | 983<br>648     | (7.1)           |
|          | W<br>X      | 2<br>98    | (0)<br>(10) | 13<br>151        | (2)<br>(16)  | 25<br>81        | (4)<br>(8)   | 97<br>141   | (15)<br>(15)   | 244<br>218   | (38)<br>(23)   | 141<br>137  | (22) (14)    | 126<br>115  | (19)<br>(12)   | 0<br>23        | (0)<br>(2)   | 648<br>964     | (4.7)<br>(7.0)  |
|          | Y           | 0          | (0)         | 0                | (0)          | 2               | (10)         | 3           | (15)           | 6            | (30)           | 7           | (35)         | 2           | (10)           | 0              | (0)          | 20             | (0.1)           |
| 2004 T   | otal        | 116        | (0.8)       | 535              | (3.9)        | 1,045           | (7.6)        | 2,587       | (18.7)         | 4,371        | (31.6)         | 2,889       | (20.9)       | 2,260       | (16.3)         | 35             | (0.3)        | 13,838         |                 |
| 2005     | Α           | 2          | (0)         | 13               | (3)          | 47              | (11)         | 96          | (23)           | 150          | (36)           | 72          | (17)         | 40          | (10)           | 0              | (0)          | 420            | (3.0)           |
|          | B<br>C      | 1<br>0     | (0)         | 20<br>2          | (9)          | 70<br>17        | (30)         | 50<br>76    | (21)           | 72<br>75     | (31)<br>(28)   | 15<br>55    | (6)          | 5<br>46     | (2)<br>(17)    | 0              | (0)          | 233<br>271     | (1.7)           |
|          | D           | 0          | (0)         | 7                | (1)          | 41              | (6)<br>(7)   | 92          | (28)           | 174          | (28)           | 142         | (20)         | 124         | (17)           | 0              | (0)<br>(0)   | 580            | (1.9)<br>(4.1)  |
|          | E           | 0          | (0)         | 24               | (2)          | 69              | (5)          | 190         | (13)           | 484          | (32)           | 417         | (28)         | 331         | (22)           | 0              | (0)          | 1,515          | (10.8)          |
|          | F           | 1          | (0)         | 22               | (2)          | 70              | (6)          | 182         | (16)           | 437          | (39)           | 291         | (26)         | 120         | (11)           | 0              | (0)          | 1,123          | (8.0)           |
|          | G<br>H      | 0          | (0)<br>(0)  | 3<br>13          | (6) (4)      | 5<br>39         | (10) (12)    | 12<br>73    | (24)           | 12<br>110    | (24)           | 10<br>52    | (20) (15)    | 8<br>50     | (16)<br>(15)   | 0              | (0)<br>(0)   | 50<br>337      | (0.4)<br>(2.4)  |
|          | I           | 3          | (0)         | 18               | (2)          | 62              | (7)          | 183         | (21)           | 307          | (36)           | 174         | (20)         | 106         | (12)           | 0              | (0)          | 853            | (6.1)           |
|          | J<br>K      | 1          | (1)         | 6<br>31          | (6)<br>(4)   | 30<br>79        | (31)<br>(9)  | 27<br>201   | (28)<br>(23)   | 25<br>262    | (26)<br>(30)   | 7<br>147    | (7)<br>(17)  | 0<br>162    | (0)<br>(18)    | 0              | (0)<br>(0)   | 96<br>884      | (0.7)<br>(6.3)  |
|          | L           | 0          | (0)         | 11               | (4)          | 26              | (9)          | 56          | (20)           | 88           | (32)           | 49          | (18)         | 44          | (16)           | 0              | (0)          | 274            | (1.9)           |
|          | M           | 1          | (0)         | 2                | (1)          | 37              | (10)         | 89          | (25)           | 109          | (31)           | 62          | (17)         | 55          | (15)           | 0              | (0)          | 355            | (2.5)           |
|          | N<br>O      | 3          | (1)         | 5<br>17          | (2)<br>(3)   | 14<br>35        | (5)<br>(6)   | 58<br>94    | (20)<br>(15)   | 99<br>230    | (34)<br>(37)   | 70<br>128   | (24)<br>(21) | 46<br>110   | (16)<br>(18)   | 0              | (0)<br>(0)   | 295<br>615     | (2.1)<br>(4.4)  |
|          | P           | 1          | (0)         | 24               | (2)          | 92              | (9)          | 235         | (23)           | 282          | (28)           | 205         | (20)         | 178         | (18)           | 0              | (0)          | 1,017          | (7.2)           |
|          | Q           | 0          | (0)         | 10               | (2)          | 42              | (7)          | 162         | (28)           | 141          | (24)           | 122         | (21)         | 103         | (18)           | 1              | (0)          | 581            | (4.1)           |
|          | R<br>S      | 1          | (0)<br>(0)  | 47<br>12         | (7)          | 78<br>14        | (12)<br>(8)  | 152<br>51   | (23)<br>(28)   | 188<br>51    | (28)<br>(28)   | 113<br>24   | (17)<br>(13) | 86<br>28    | (13)<br>(16)   | 0              | (0)<br>(0)   | 665<br>180     | (4.7)<br>(1.3)  |
|          | т           | 0          | (0)         | 15               | (4)          | 35              | (8)          | 100         | (24)           | 162          | (39)           | 63          | (15)         | 38          | (9)            | 0              | (0)          | 413            | (2.9)           |
|          | U<br>V      | 1          | (0)         | 12               | (1)          | 34<br>46        | (8)          | 65<br>189   | (16)           | 131<br>293   | (32)           | 101<br>185  | (25)         | 71<br>178   | (17)           | 0              | (0)          | 408<br>908     | (2.9)           |
|          | w           | 4          | (0)<br>(0)  | 13<br>11         | (1)          | 40              | (5)<br>(6)   | 87          | (21)<br>(12)   | 293          | (32)<br>(38)   | 178         | (20)<br>(25) | 116         | (20)<br>(17)   | 0              | (0)<br>(0)   | 701            | (6.5)<br>(5.0)  |
|          | х           | 82         | (9)         | 124              | (14)         | 94              | (11)         | 109         | (12)           | 211          | (24)           | 137         | (15)         | 117         | (13)           | 17             | (2)          | 891            | (6.3)           |
| 2005 T   | Y           | 3<br>107   | (1)         | 11<br>466        | (3)<br>(3.3) | 15<br>1,132     | (4)          | 92<br>2,721 | (24)<br>(19.4) | 123<br>4,483 | (31)<br>(31.9) | 92<br>2,911 | (24)         | 55<br>2,217 | (14)<br>(15.8) | 0<br>19        | (0)<br>(0.1) | 391<br>14,056  | (2.8)           |
|          |             |            |             |                  |              |                 |              |             |                |              |                |             |              |             |                |                |              |                |                 |
| 2006     | A<br>B      | 1          | (0)<br>(0)  | 21<br>25         | (5)<br>(11)  | 50<br>63        | (11)<br>(28) | 101<br>47   | (22)<br>(21)   | 141<br>68    | (31)<br>(30)   | 85<br>13    | (19)         | 49<br>Q     | (11)<br>(4)    | 1              | (0)<br>(0)   | 449<br>226     | (3.1)<br>(1.6)  |
|          | С           | 0          | (0)         | 23               | (1)          | 24              | (28)         | 78          | (21)           | 96           | (32)           | 13<br>62    | (6)<br>(21)  | 9<br>38     | (13)           | 0              | (0)          | 301            | (2.1)           |
|          | D           | 0          | (0)         | 10               | (2)          | 42              | (7)          | 95          | (17)           | 144          | (25)           | 137         | (24)         | 143         | (25)           | 0              | (0)          | 571            | (4.0)           |
|          | E<br>F      | 3          | (0)<br>(0)  | 29<br>17         | (2)<br>(2)   | 87<br>51        | (5)<br>(5)   | 207<br>170  | (13)<br>(16)   | 507<br>435   | (32)<br>(40)   | 393<br>290  | (25)<br>(27) | 373<br>122  | (23)<br>(11)   | 1<br>0         | (0)<br>(0)   | 1,600<br>1,086 | (11.2)<br>(7.6) |
|          | G           | 0          | (0)         | 2                | (6)          | 3               | (8)          | 8           | (22)           | 11           | (31)           | 10          | (28)         | 2           | (6)            | 0              | (0)          | 36             | (0.3)           |
|          | H           | 0          | (0)         | 17               | (5)          | 39              | (12)         | 69          | (22)           | 86           | (27)           | 48          | (15)         | 56          | (18)           | 0              | (0)          | 315            | (2.2)           |
|          | l<br>J      | 1          | (0)<br>(0)  | 19<br>6          | (2)<br>(8)   | 77<br>16        | (8)<br>(22)  | 227<br>26   | (25)<br>(36)   | 295<br>21    | (32)<br>(29)   | 167<br>2    | (18)<br>(3)  | 119<br>1    | (13)<br>(1)    | 4              | (0)<br>(1)   | 909<br>73      | (6.3)<br>(0.5)  |
|          | к           | 3          | (0)         | 33               | (4)          | 86              | (9)          | 185         | (20)           | 252          | (28)           | 195         | (21)         | 148         | (16)           | 5              | (1)          | 907            | (6.3)           |
|          | L           | 0          | (0)<br>(0)  | 11<br>12         | (4)          | 21<br>33        | (7)<br>(8)   | 64<br>100   | (21)           | 108<br>147   | (36)<br>(36)   | 59<br>76    | (20)         | 36<br>36    | (12)           | 0              | (0)<br>(0)   | 299<br>405     | (2.1)<br>(2.8)  |
|          | N           | 0          | (0)         | 12               | (0)          | 33<br>17        | (6)          | 52          | (25)           | 99           | (36)           | 49          | (19)         | 36<br>56    | (20)           | 1              | (0)          | 405<br>275     | (2.8)           |
|          | 0           | 1          | (0)         | 16               | (2)          | 30              | (5)          | 113         | (17)           | 235          | (36)           | 145         | (22)         | 115         | (18)           | 0              | (0)          | 655            | (4.6)           |
|          | P<br>Q      | 1          | (0)<br>(0)  | 26<br>10         | (2)          | 101<br>34       | (9)          | 255<br>105  | (23)           | 349<br>164   | (32)           | 209<br>105  | (19)<br>(21) | 161<br>83   | (15)<br>(17)   | 0              | (0)<br>(0)   | 1,102<br>503   | (7.7)<br>(3.5)  |
|          | R           | 1          | (0)         | 45               | (7)          | 54<br>67        | (10)         | 172         | (21)           | 186          | (28)           | 105         | (17)         | 71          | (17)           | 2              | (0)          | 656            | (4.6)           |
|          | S           | 0          | (0)         | 10               | (5)          | 21              | (11)         | 44          | (23)           | 57           | (30)           | 38          | (20)         | 17          | (9)            | 1              | (1)          | 188            | (1.3)           |
|          | T<br>U      | 1          | (0)         | 14               | (3)          | 27              | (6)          | 103<br>64   | (23)           | 152<br>111   | (34)           | 88          | (20)         | 57<br>68    | (13)           | 0              | (0)          | 442<br>367     | (3.1)           |
|          | V           | 0          | (0)<br>(0)  | 3<br>10          | (1)<br>(1)   | 26<br>67        | (7)<br>(6)   | 216         | (17)<br>(21)   | 327          | (30)<br>(31)   | 95<br>246   | (26)<br>(24) | 176         | (19)<br>(17)   | 0<br>4         | (0)<br>(0)   | 1,046          | (2.6)<br>(7.3)  |
|          | W           | 2          | (0)         | 7                | (1)          | 26              | (4)          | 70          | (11)           | 242          | (38)           | 154         | (24)         | 138         | (21)           | 3              | (0)          | 642            | (4.5)           |
|          | X<br>Y      | 108<br>0   | (12)        | 110<br>4         | (13)<br>(1)  | 76<br>28        | (9)          | 110<br>104  | (13)<br>(26)   | 211<br>119   | (24)           | 131<br>83   | (15)<br>(21) | 130<br>59   | (15)<br>(15)   | 1              | (0)<br>(0)   | 877<br>397     | (6.1)<br>(2.8)  |
| 2006 T   |             | 123        | (0.9)       | 461              | (3.2)        | 20<br>1,112     | (7.8)        | 2,785       | (19.4)         | 4,563        | (31.8)         | 2,994       | (20.9)       | 2,263       | (15.8)         | 26             | (0.2)        | 14,327         | (2.0)           |
|          | Tatal       | 0.40       | (0.0)       | 4 400            | (2.5)        | 0.000           | (7.0)        | 0.000       | (40.0)         | 40 44-       | (24.0)         | 0.70/       | (00.0)       | 0 740       | (40.0)         | ~~             | (0.0)        | 40.004         |                 |
| Grand    | rotar       | 346        | (0.8)       | 1,462            | (3.5)        | 3,289           | (7.8)        | 8,093       | (19.2)         | 13,417       | (31.8)         | 8,794       | (20.8)       | 6,740       | (16.0)         | 80             | (0.2)        | 42,221         |                 |

| Table 41 Admissions by |        | inge sta |        | <b>U</b> / |         |        |       |        |        |        |
|------------------------|--------|----------|--------|------------|---------|--------|-------|--------|--------|--------|
|                        |        |          | Ag     | e Group    | (Years) |        |       |        |        |        |
| Unit discharge Status  | <1     | <1       |        | 4          | 5-10    |        | 11-15 |        | Total  |        |
|                        | n      | %        | n      | %          | n       | %      | n     | %      | n      | %      |
|                        |        |          |        |            |         |        |       |        |        |        |
| Alive                  | 19,084 | (48)     | 10,105 | (25)       | 5,648   | (14)   | 5,217 | (13)   | 40,054 | (94.9) |
| Dead                   | 1,140  | (53)     | 442    | (20)       | 274     | (13)   | 301   | (14)   | 2,157  | (5.1)  |
| Unknown                | 5      | (50)     | 2      | (20)       | 1       | (10)   | 2     | (20)   | 10     | -      |
| Total                  | 20,229 | (47.9)   | 10,549 | (25.0)     | 5,923   | (14.0) | 5,520 | (13.1) | 42,221 |        |

Table 41 Admissions by unit discharge status and age, 2004 - 2006

 Table 42 Admissions by unit discharge status and age (<1), 2004 - 2006</td>

 Age Group (Months)

 Unit discharge Status <1 1-2 3-5 6-11 Total % % % % n n n n n Alive 4,488 (24) 3,813 (22) 19,084 6,608 (35) (20) 4,175 Dead 514 (45) 226 (20) 193 (18) 1,140 (17)207 Unknown (20)2 (40)1 (20)(20)5 1 1 4,383 Total 7,123 (35.2) 4,716 (23.3) 4,007 (19.8) 20,229 (21.7)

%

(94.3)

(5.6)

Table 43 Admissions by unit discharge status and sex, 2004 - 2006

|                       | Sex    |        |        |        |           |       |         |       |        |        |
|-----------------------|--------|--------|--------|--------|-----------|-------|---------|-------|--------|--------|
| Unit discharge Status | Ma     | le     | Fem    | ale    | Ambiguous |       | Unknown |       | Total  |        |
|                       | n      | %      | n      | %      | n         | %     | n       | %     | n      | %      |
|                       |        |        |        |        |           |       |         |       |        |        |
| Alive                 | 22,810 | (57)   | 17,187 | (43)   | 11        | (0)   | 46      | (0)   | 40,054 | (94.9) |
| Dead                  | 1,175  | (54)   | 975    | (45)   | 3         | (0)   | 4       | (0)   | 2,157  | (5.1)  |
| Unknown               | 5      | (50)   | 5      | (50)   | 0         | (0)   | 0       | (0)   | 10     | -      |
| Total                 | 23,990 | (56.8) | 18,167 | (43.0) | 14        | (0.0) | 50      | (0.1) | 42,221 |        |

Table 44 Admissions by unit discharge status and sex (age <1), 2004 - 2006

|                       |        | Sex    |       |             |   |       |             |       |         |        |       |  |
|-----------------------|--------|--------|-------|-------------|---|-------|-------------|-------|---------|--------|-------|--|
| Unit discharge Status | Ma     | Male   |       | lale Female |   | nale  | e Ambiguous |       | Unknown |        | Total |  |
|                       | n      | %      | n     | %           | n | %     | n           | %     | n       | %      |       |  |
|                       |        |        |       |             |   |       |             |       |         |        |       |  |
| Alive                 | 11,279 | (59)   | 7,774 | (41)        | 6 | (0)   | 25          | (0)   | 19,084  | (94.3) |       |  |
| Dead                  | 616    | (54)   | 517   | (45)        | 3 | (0)   | 4           | (0)   | 1,140   | (5.6)  |       |  |
| Unknown               | 4      | (80)   | 1     | (20)        | 0 | (0)   | 0           | (0)   | 5       | -      |       |  |
| Total                 | 11,899 | (58.8) | 8,292 | (41.0)      | 9 | (0.0) | 29          | (0.1) | 20,229  |        |       |  |

|        | 45 Admission |              | Unit D        | Discharg | je Statu    | IS        |            |              |              |  |
|--------|--------------|--------------|---------------|----------|-------------|-----------|------------|--------------|--------------|--|
| Year   | NHS Trust    | Aliv         | ve<br>%       | Dea<br>n | ad<br>%     | Unkr<br>n | iown<br>%  | Tot<br>n     | al<br>%      |  |
|        |              |              |               |          |             |           |            |              |              |  |
| 2004   | A<br>B       | 424<br>283   | (96)<br>(99)  | 19<br>2  | (4)<br>(1)  | 0         | (0)<br>(0) | 443<br>285   | (3.)<br>(2.) |  |
|        | C            | 203          | (99)          | 15       | (1)         | 0         | (0)        | 265          | (2.          |  |
|        | D            | 547          | (94)          | 37       | (6)         | 0         | (0)        | 584          | (4.          |  |
|        | E            | 1,653        | (93)          | 125      | (7)         | 0         | (0)        | 1,778        | (12.         |  |
|        | F            | 1,110        | (95)          | 55       | (5)         | 0         | (0)        | 1,165        | (8.          |  |
|        | G            | 40           | (91)          | 4        | (9)         | 0         | (0)        | 44           | (0.          |  |
|        | H<br>I       | 283<br>808   | (92)          | 25<br>51 | (8)         | 0         | (0)<br>(0) | 308<br>859   | (2.)<br>(6.) |  |
|        | J            | 82           | (94)<br>(100) | 0        | (6)<br>(0)  | 0         | (0)        | 82           | (0.<br>(0.   |  |
|        | ĸ            | 839          | (95)          | 44       | (5)         | 0         | (0)        | 883          | (6.          |  |
|        | L            | 216          | (96)          | 10       | (4)         | 0         | (0)        | 226          | (1.          |  |
|        | М            | 352          | (94)          | 21       | (6)         | 0         | (0)        | 373          | (2.          |  |
|        | N            | 325          | (96)          | 12       | (4)         | 0         | (0)        | 337          | (2.          |  |
|        | O<br>P       | 534          | (97)          | 19       | (3)         | 0         | (0)        | 553          | (4.          |  |
|        | Q            | 931<br>532   | (95)<br>(97)  | 51<br>15 | (5)<br>(3)  | 0         | (0)<br>(0) | 982<br>547   | (7.<br>(4.   |  |
|        | R            | 568          | (97)          | 17       | (3)         | 0         | (0)        | 585          | (4.          |  |
|        | S            | 164          | (98)          | 3        | (2)         | 0         | (0)        | 167          | (1.          |  |
|        | т            | 355          | (97)          | 11       | (3)         | 0         | (0)        | 366          | (2.          |  |
|        | U            | 372          | (95)          | 20       | (5)         | 0         | (0)        | 392          | (2.          |  |
|        | V            | 902          | (92)          | 78       | (8)         | 3         | (0)        | 983          | (7.          |  |
|        | W<br>X       | 616<br>928   | (95)          | 32<br>36 | (5)         | 0         | (0)        | 648<br>964   | (4.          |  |
|        | A<br>Y       | 928          | (96)          | 2        | (4)         | 0         | (0)<br>(0) | 964<br>20    | (7.<br>(0.   |  |
| 2004 T | -            | 13,131       | (94.9)        | 704      | (5.1)       | 3         | (0.0)      | 13,838       | (0.          |  |
| 2005   | •            | 444          | (00)          | 0        | (0)         | 0         | (0)        | 400          | ()           |  |
| 2005   | A<br>B       | 411<br>232   | (98) (100)    | 9<br>1   | (2)         | 0         | (0)<br>(0) | 420<br>233   | (3.<br>(1.   |  |
|        | C            | 252          | (100)         | 16       | (6)         | 0         | (0)        | 233          | (1.          |  |
|        | D            | 541          | (93)          | 39       | (7)         | 0         | (0)        | 580          | (4.          |  |
|        | E            | 1,409        | (93)          | 106      | (7)         | 0         | (0)        | 1,515        | (10.         |  |
|        | F            | 1,071        | (95)          | 52       | (5)         | 0         | (0)        | 1,123        | (8.          |  |
|        | G            | 41           | (82)          | 9        | (18)        | 0         | (0)        | 50           | (0.          |  |
|        | н            | 316          | (94)          | 21       | (6)         | 0         | (0)        | 337          | (2.          |  |
|        | l<br>J       | 806<br>95    | (94)          | 47       | (6)         | 0         | (0)<br>(0) | 853<br>96    | (6.<br>(0.   |  |
|        | ĸ            | 847          | (96)          | 37       | (1)         | 0         | (0)        | 884          | (6.          |  |
|        | L            | 263          | (96)          | 11       | (4)         | 0         | (0)        | 274          | (1.          |  |
|        | M            | 346          | (97)          | 9        | (3)         | 0         | (0)        | 355          | (2.          |  |
|        | Ν            | 280          | (95)          | 15       | (5)         | 0         | (0)        | 295          | (2.          |  |
|        | 0            | 600          | (98)          | 15       | (2)         | 0         | (0)        | 615          | (4.          |  |
|        | P<br>Q       | 949<br>566   | (93)          | 68<br>15 | (7)         | 0         | (0)        | 1,017<br>581 | (7.<br>(4    |  |
|        | R            | 645          | (97)          | 20       | (3)         | 0         | (0)<br>(0) | 665          | (4.<br>(4.   |  |
|        | S            | 176          | (98)          | 4        | (2)         | 0         | (0)        | 180          | (1.          |  |
|        | т            | 398          | (96)          | 15       | (4)         | 0         | (0)        | 413          | (2.          |  |
|        | U            | 385          | (94)          | 23       | (6)         | 0         | (0)        | 408          | (2.          |  |
|        | V            | 826          | (91)          | 82       | (9)         | 0         | (0)        | 908          | (6.          |  |
|        | W            | 671          | (96)          | 30       | (4)         | 0         | (0)        | 701          | (5.          |  |
|        | X<br>Y       | 856<br>381   | (96)<br>(97)  | 35<br>10 | (4)<br>(3)  | 0         | (0)<br>(0) | 891<br>391   | (6.<br>(2.   |  |
| 2005 T |              | 13,366       | (95.1)        | 690      | (4.9)       | 0         | (0.0)      | 14,056       | <u>رد</u> .  |  |
| 2006   | ٨            | 441          | (00)          | 7        | (2)         | 1         | (0)        | 440          | ()           |  |
| 2000   | A<br>B       | 223          | (98)<br>(99)  | 7        | (2)<br>(1)  | 1<br>1    | (0)<br>(0) | 449<br>226   | (3.<br>(1.   |  |
|        | C            | 287          | (95)          | 14       | (5)         | 0         | (0)        | 301          | (2.          |  |
|        | D            | 530          | (93)          | 41       | (7)         | 0         | (0)        | 571          | (4.          |  |
|        | E            | 1,481        | (93)          | 119      | (7)         | 0         | (0)        | 1,600        | (11.         |  |
|        | F            | 1,038        | (96)          | 48       | (4)         | 0         | (0)        | 1,086        | (7.          |  |
|        | G<br>H       | 31           | (86)          | 5<br>31  | (14)        | 0         | (0)        | 36<br>315    | (0.          |  |
|        | H            | 284<br>854   | (90)<br>(94)  | 31<br>55 | (10)<br>(6) | 0         | (0)<br>(0) | 315<br>909   | (2.<br>(6.   |  |
|        | J            | 71           | (97)          | 2        | (3)         | 0         | (0)        | 73           | (0.          |  |
|        | ĸ            | 873          | (96)          | 34       | (4)         | 0         | (0)        | 907          | (6.          |  |
|        | L            | 283          | (95)          | 16       | (5)         | 0         | (0)        | 299          | (2.          |  |
|        | М            | 385          | (95)          | 19       | (5)         | 1         | (0)        | 405          | (2.          |  |
|        | N            | 258          | (94)          | 17       | (6)         | 0         | (0)        | 275          | (1.          |  |
|        | O<br>P       | 637<br>1,056 | (97)          | 18<br>46 | (3)         | 0         | (0)        | 655<br>1,102 | (4.          |  |
|        | Q            | 481          | (96)<br>(96)  | 46<br>21 | (4)         | 0         | (0)<br>(0) | 1,102        | (7.<br>(3.   |  |
|        | R            | 627          | (96)          | 29       | (4)         | 0         | (0)        | 656          | (4.          |  |
|        | S            | 182          | (97)          | 5        | (3)         | 1         | (1)        | 188          | (1.          |  |
|        | т            | 427          | (97)          | 15       | (3)         | 0         | (0)        | 442          | (3.          |  |
|        | U            | 339          | (92)          | 28       | (8)         | 0         | (0)        | 367          | (2.          |  |
|        |              | 956          | (91)          | 89       | (9)         | 1         | (0)        | 1,046        | (7.          |  |
|        | V            |              |               |          |             |           |            |              |              |  |
|        | w            | 599          | (93)          | 43       | (7)         | 0         | (0)        | 642          | (4.          |  |
|        | W<br>X       | 599<br>839   | (96)          | 37       | (4)         | 1         | (0)        | 877          | (6.          |  |
| 2006 T | W<br>X<br>Y  | 599          |               |          |             |           |            |              |              |  |

| Table 46 Admissions by u | nit discha | rge des            | tination a | ind age, | 2004 - 2 | 2006   |       |        |        |    |  |
|--------------------------|------------|--------------------|------------|----------|----------|--------|-------|--------|--------|----|--|
|                          |            |                    | Ag         | e Group  | (Years)  | )      |       |        |        |    |  |
| Discharge Destination    | <1         | l                  | 1-4        | 4        | 5-       | 10     | 11-   | -15    | Tot    | al |  |
| _                        | n          | <u>n % n % n %</u> |            |          |          |        |       |        |        |    |  |
|                          |            |                    |            |          |          |        |       |        |        |    |  |
| Normal residence         | 202        | (21)               | 336        | (35)     | 267      | (27)   | 167   | (17)   | 972    | (  |  |
| Hospice                  | 14         | (29)               | 16         | (33)     | 11       | (22)   | 8     | (16)   | 49     | (  |  |
| Same hospital            | 15,100     | (46)               | 8,242      | (25)     | 4,709    | (14)   | 4,505 | (14)   | 32,556 | (8 |  |
| Other hospital           | 3,603      | (59)               | 1,407      | (23)     | 621      | (10)   | 494   | (8)    | 6,125  | (1 |  |
| Unknown                  | 170        | (47)               | 106        | (29)     | 41       | (11)   | 45    | (12)   | 362    | (  |  |
| Total                    | 19,089     | (47.6)             | 10,107     | (25.2)   | 5,649    | (14.1) | 5,219 | (13.0) | 40,064 |    |  |

%

(2.4) (0.1) (81.3) (15.3) (0.9)

| Table 47 Standardised mortal | ity ratios by trust, 2004 |
|------------------------------|---------------------------|
|------------------------------|---------------------------|

|           | dardised mortali |       |            | ardised I | Mortalit | ty Ratio  |           |
|-----------|------------------|-------|------------|-----------|----------|-----------|-----------|
|           | Number of        | Unad  | ljusted (9 |           |          | usted (95 | % CI)     |
| NHS Trust | Admissions       | SMR   | Lower      | Upper     | -        | Lower     | Upper     |
|           |                  | ••••• |            | 0 0 0 0 0 | •        |           | • • • • • |
| Α         | 449              | 0.83  | 0.51       | 1.29      | 1.34     | 0.82      | 2.08      |
| В         | 293              | 0.13  | 0.02       | 0.48      | 0.21     | 0.03      | 0.76      |
| С         | 268              | 1.10  | 0.62       | 1.78      | 0.66     | 0.38      | 1.07      |
| D         | 598              | 1.28  | 0.92       | 1.73      | 0.88     | 0.63      | 1.19      |
| E         | 1,817            | 1.39  | 1.16       | 1.64      | 1.09     | 0.91      | 1.28      |
| F         | 1,179            | 0.94  | 0.71       | 1.21      | 0.69     | 0.53      | 0.89      |
| G         | 45               | 1.75  | 0.49       | 4.18      | 0.89     | 0.25      | 2.12      |
| Н         | 317              | 1.61  | 1.07       | 2.32      | 1.33     | 0.88      | 1.91      |
| I         | 878              | 1.14  | 0.86       | 1.49      | 1.16     | 0.87      | 1.51      |
| J         | 82               | 0.00  | 0.00       | 0.87      | 0.00     | 0.00      | 1.23      |
| к         | 901              | 0.98  | 0.72       | 1.30      | 0.94     | 0.69      | 1.25      |
| L         | 234              | 0.93  | 0.47       | 1.63      | 0.79     | 0.40      | 1.38      |
| М         | 380              | 1.09  | 0.68       | 1.64      | 1.02     | 0.64      | 1.53      |
| N         | 340              | 0.69  | 0.36       | 1.20      | 0.60     | 0.31      | 1.03      |
| 0         | 553              | 0.68  | 0.41       | 1.05      | 0.98     | 0.59      | 1.52      |
| Р         | 993              | 1.03  | 0.77       | 1.34      | 1.09     | 0.82      | 1.42      |
| Q         | 565              | 0.56  | 0.32       | 0.90      | 0.63     | 0.36      | 1.02      |
| R         | 614              | 0.55  | 0.32       | 0.87      | 0.52     | 0.30      | 0.82      |
| S         | 174              | 0.34  | 0.07       | 0.98      | 0.49     | 0.10      | 1.42      |
| Т         | 372              | 0.58  | 0.29       | 1.03      | 0.70     | 0.35      | 1.23      |
| U         | 394              | 1.00  | 0.62       | 1.52      | 0.72     | 0.44      | 1.09      |
| v         | 996              | 1.56  | 1.25       | 1.93      | 0.93     | 0.74      | 1.15      |
| w         | 661              | 0.95  | 0.66       | 1.33      | 0.83     | 0.57      | 1.17      |
| х         | 990              | 0.74  | 0.52       | 1.01      | 1.14     | 0.81      | 1.56      |
| Y         | 23               | 1.71  | 0.21       | 5.52      | 1.32     | 0.16      | 4.27      |

Figure 47a PICU Standardised mortality ratios by NHS trust with 99.9% control limits, 2004: unadjusted

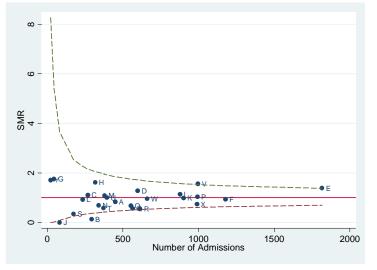
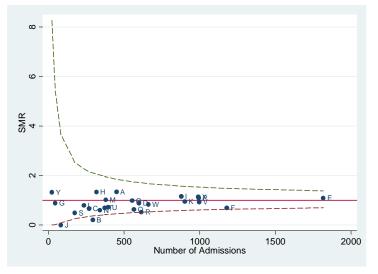




Figure 47b PICU Standardised mortality ratios by NHS trust with 99.9% control limits, 2004: risk adjusted (PIM)



|           | ndardised mort | Ĺ    |           | ardised I |      | ty Ratio  |       |
|-----------|----------------|------|-----------|-----------|------|-----------|-------|
|           | Number of      | Unad | justed (9 | 5% CI)    | Adj  | usted (95 | % CI) |
| NHS Trust | Admissions     | SMR  | Lower     | Upper     | SMR  | Lower     | Upper |
|           |                |      |           |           |      |           |       |
| Α         | 425            | 0.48 | 0.23      | 0.87      | 0.61 | 0.29      | 1.10  |
| В         | 236            | 0.09 | 0.00      | 0.47      | 0.14 | 0.00      | 0.76  |
| С         | 274            | 1.18 | 0.68      | 1.88      | 0.76 | 0.44      | 1.21  |
| D         | 597            | 1.35 | 0.98      | 1.82      | 0.92 | 0.66      | 1.23  |
| E         | 1,546          | 1.44 | 1.19      | 1.72      | 1.03 | 0.86      | 1.24  |
| F         | 1,132          | 0.93 | 0.70      | 1.21      | 0.67 | 0.51      | 0.88  |
| G         | 50             | 3.64 | 1.73      | 6.35      | 0.98 | 0.46      | 1.70  |
| Н         | 340            | 1.31 | 0.83      | 1.95      | 1.24 | 0.79      | 1.85  |
| I         | 871            | 1.11 | 0.83      | 1.46      | 1.02 | 0.76      | 1.34  |
| J         | 97             | 0.21 | 0.01      | 1.13      | 0.40 | 0.01      | 2.17  |
| к         | 906            | 0.85 | 0.60      | 1.15      | 0.76 | 0.54      | 1.03  |
| L         | 292            | 0.76 | 0.38      | 1.34      | 0.80 | 0.40      | 1.40  |
| м         | 357            | 0.51 | 0.23      | 0.96      | 0.45 | 0.21      | 0.85  |
| Ν         | 297            | 1.02 | 0.58      | 1.66      | 0.83 | 0.47      | 1.35  |
| 0         | 618            | 0.49 | 0.28      | 0.80      | 0.68 | 0.38      | 1.11  |
| Р         | 1,034          | 1.41 | 1.11      | 1.76      | 1.34 | 1.06      | 1.67  |
| Q         | 604            | 0.54 | 0.31      | 0.86      | 0.70 | 0.40      | 1.13  |
| R         | 688            | 0.68 | 0.43      | 1.00      | 0.70 | 0.45      | 1.04  |
| S         | 185            | 0.44 | 0.12      | 1.10      | 0.54 | 0.15      | 1.35  |
| т         | 419            | 0.72 | 0.41      | 1.18      | 0.93 | 0.53      | 1.52  |
| U         | 412            | 1.13 | 0.72      | 1.67      | 0.70 | 0.45      | 1.04  |
| v         | 921            | 1.82 | 1.46      | 2.23      | 1.03 | 0.83      | 1.26  |
| w         | 715            | 0.90 | 0.62      | 1.26      | 0.74 | 0.51      | 1.04  |
| х         | 902            | 0.78 | 0.55      | 1.08      | 1.03 | 0.72      | 1.42  |
| Y         | 427            | 0.47 | 0.23      | 0.86      | 0.47 | 0.22      | 0.85  |

Table 48 Standardised mortality ratios by trust, 2005

Figure 48a PICU Standardised mortality ratios by NHS trust with 99.9% control limits, 2005: unadjusted

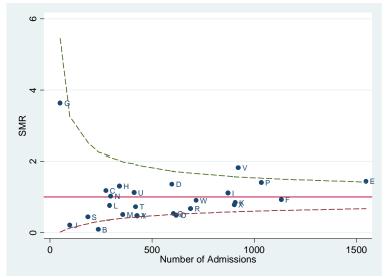
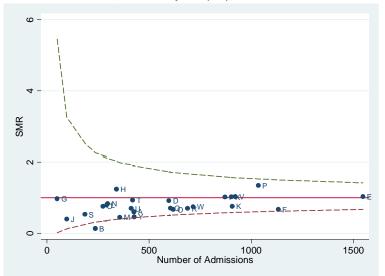




Figure 48b PICU Standardised mortality ratios by NHS trust with 99.9% control limits, 2005: risk adjusted (PIM)



| Table 49 Sta | e 49 Standardised mortality ratios by trust, 2006 |      |           |          |      |            |         |      |                        |       |  |  |
|--------------|---------------------------------------------------|------|-----------|----------|------|------------|---------|------|------------------------|-------|--|--|
|              |                                                   |      |           | dardised |      |            |         |      |                        |       |  |  |
|              | Number of                                         |      | justed (9 | 5% CI)   |      | djusted (9 | 95% CI) |      | PIM2 Adjusted (95% CI) |       |  |  |
| NHS Trust    | Admissions                                        | SMR  | Lower     | Upper    | SMR  | Lower      | Upper   | SMR  | Lower                  | Upper |  |  |
|              |                                                   |      |           |          |      |            |         |      |                        |       |  |  |
| Α            | 454                                               | 0.29 | 0.12      | 0.59     | 0.39 | 0.16       | 0.80    | 0.58 | 0.23                   | 1.19  |  |  |
| В            | 234                                               | 0.16 | 0.02      | 0.57     | 0.32 | 0.04       | 1.13    | 0.45 | 0.05                   | 1.60  |  |  |
| С            | 309                                               | 0.85 | 0.47      | 1.40     | 0.69 | 0.38       | 1.14    | 0.74 | 0.41                   | 1.22  |  |  |
| D            | 585                                               | 1.34 | 0.98      | 1.79     | 0.93 | 0.68       | 1.25    | 0.99 | 0.72                   | 1.32  |  |  |
| E            | 1,630                                             | 1.39 | 1.16      | 1.65     | 1.08 | 0.90       | 1.28    | 0.99 | 0.82                   | 1.17  |  |  |
| F            | 1,100                                             | 0.82 | 0.61      | 1.08     | 0.68 | 0.50       | 0.90    | 0.60 | 0.44                   | 0.79  |  |  |
| G            | 36                                                | 2.60 | 0.87      | 5.52     | 0.80 | 0.27       | 1.70    | 0.70 | 0.24                   | 1.49  |  |  |
| н            | 322                                               | 1.86 | 1.29      | 2.57     | 1.85 | 1.29       | 2.56    | 1.20 | 0.84                   | 1.66  |  |  |
| I            | 929                                               | 1.15 | 0.88      | 1.47     | 1.36 | 1.04       | 1.75    | 1.29 | 0.98                   | 1.66  |  |  |
| J            | 74                                                | 0.51 | 0.06      | 1.76     | 0.70 | 0.08       | 2.42    | 0.96 | 0.12                   | 3.35  |  |  |
| к            | 938                                               | 0.72 | 0.51      | 0.99     | 0.74 | 0.52       | 1.02    | 0.84 | 0.59                   | 1.15  |  |  |
| L            | 318                                               | 0.94 | 0.54      | 1.51     | 1.05 | 0.61       | 1.68    | 1.19 | 0.69                   | 1.91  |  |  |
| м            | 422                                               | 0.84 | 0.51      | 1.30     | 0.81 | 0.49       | 1.25    | 1.01 | 0.61                   | 1.56  |  |  |
| N            | 276                                               | 1.22 | 0.73      | 1.89     | 0.96 | 0.58       | 1.49    | 1.01 | 0.60                   | 1.56  |  |  |
| 0            | 655                                               | 0.51 | 0.31      | 0.81     | 0.76 | 0.45       | 1.19    | 0.67 | 0.40                   | 1.05  |  |  |
| Р            | 1,119                                             | 0.77 | 0.57      | 1.02     | 0.77 | 0.57       | 1.02    | 0.82 | 0.60                   | 1.08  |  |  |
| Q            | 527                                               | 0.75 | 0.46      | 1.13     | 0.90 | 0.56       | 1.36    | 1.10 | 0.68                   | 1.66  |  |  |
| R            | 692                                               | 0.84 | 0.57      | 1.18     | 0.74 | 0.51       | 1.05    | 0.71 | 0.49                   | 1.00  |  |  |
| S<br>T       | 190                                               | 0.69 | 0.28      | 1.39     | 0.84 | 0.34       | 1.69    | 1.24 | 0.50                   | 2.50  |  |  |
|              | 450                                               | 0.67 | 0.38      | 1.07     | 0.84 | 0.49       | 1.36    | 1.24 | 0.71                   | 1.99  |  |  |
| U            | 369                                               | 1.42 | 0.96      | 2.02     | 0.81 | 0.55       | 1.16    | 0.88 | 0.59                   | 1.26  |  |  |
| v            | 1,064                                             | 1.64 | 1.33      | 1.98     | 0.81 | 0.66       | 0.98    | 0.80 | 0.65                   | 0.97  |  |  |
| w            | 659                                               | 1.25 | 0.92      | 1.66     | 0.94 | 0.69       | 1.25    | 0.81 | 0.60                   | 1.08  |  |  |
| х            | 896                                               | 0.79 | 0.57      | 1.08     | 1.15 | 0.82       | 1.56    | 1.13 | 0.80                   | 1.53  |  |  |
| Y            | 431                                               | 1.00 | 0.64      | 1.48     | 1.07 | 0.68       | 1.58    | 1.26 | 0.81                   | 1.87  |  |  |

Figure 49a PICU Standardised mortality ratios by NHS trust with 99.9% control limits, 2006: unadjusted

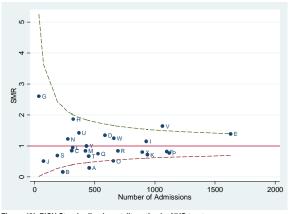



Figure 49b PICU Standardised mortality ratios by NHS trust with 99.9% control limits, 2006: risk adjusted (PIM)

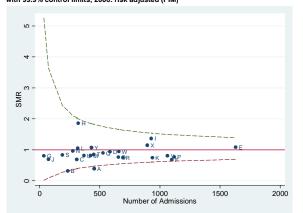
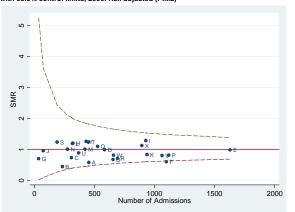




Figure 49c PICU Standardised mortality ratios by NHS trust with 99.9% control limits, 2006: risk adjusted (PIM2)



|           |            |      | Stand      | ardised | Mortali | ty Ratio  |       |
|-----------|------------|------|------------|---------|---------|-----------|-------|
|           | Number of  | Unad | ljusted (9 | 5% CI)  | Adj     | usted (95 | % CI) |
| NHS Trust | Admissions | SMR  | Lower      | Upper   | SMR     | Lower     | Upper |
|           |            |      |            |         |         |           |       |
| Α         | 1,328      | 0.53 | 0.37       | 0.73    | 0.74    | 0.52      | 1.02  |
| В         | 763        | 0.13 | 0.04       | 0.30    | 0.22    | 0.07      | 0.50  |
| С         | 851        | 1.03 | 0.76       | 1.37    | 0.70    | 0.52      | 0.93  |
| D         | 1,780      | 1.33 | 1.11       | 1.57    | 0.91    | 0.76      | 1.08  |
| E         | 4,993      | 1.40 | 1.27       | 1.55    | 1.07    | 0.96      | 1.18  |
| F         | 3,411      | 0.89 | 0.76       | 1.04    | 0.68    | 0.58      | 0.80  |
| G         | 131        | 2.68 | 1.63       | 4.07    | 0.90    | 0.55      | 1.37  |
| Н         | 979        | 1.59 | 1.27       | 1.96    | 1.47    | 1.17      | 1.81  |
| I         | 2,678      | 1.14 | 0.97       | 1.32    | 1.17    | 1.00      | 1.37  |
| J         | 253        | 0.23 | 0.05       | 0.67    | 0.36    | 0.07      | 1.04  |
| к         | 2,745      | 0.85 | 0.70       | 1.01    | 0.81    | 0.68      | 0.97  |
| L         | 844        | 0.88 | 0.63       | 1.20    | 0.88    | 0.63      | 1.20  |
| М         | 1,159      | 0.82 | 0.61       | 1.08    | 0.77    | 0.57      | 1.01  |
| Ν         | 913        | 0.96 | 0.71       | 1.28    | 0.79    | 0.58      | 1.05  |
| 0         | 1,826      | 0.56 | 0.42       | 0.73    | 0.80    | 0.60      | 1.04  |
| Р         | 3,146      | 1.05 | 0.91       | 1.22    | 1.06    | 0.91      | 1.22  |
| Q         | 1,696      | 0.61 | 0.46       | 0.79    | 0.74    | 0.56      | 0.97  |
| R         | 1,994      | 0.69 | 0.54       | 0.87    | 0.66    | 0.52      | 0.83  |
| S         | 549        | 0.50 | 0.27       | 0.83    | 0.64    | 0.35      | 1.06  |
| т         | 1,241      | 0.66 | 0.48       | 0.89    | 0.83    | 0.60      | 1.11  |
| U         | 1,175      | 1.18 | 0.93       | 1.48    | 0.75    | 0.59      | 0.94  |
| v         | 2,981      | 1.67 | 1.48       | 1.88    | 0.91    | 0.81      | 1.02  |
| w         | 2,035      | 1.04 | 0.85       | 1.24    | 0.84    | 0.69      | 1.01  |
| х         | 2,788      | 0.77 | 0.63       | 0.92    | 1.10    | 0.91      | 1.32  |
| Y         | 881        | 0.78 | 0.54       | 1.07    | 0.79    | 0.55      | 1.09  |

Figure 50a PICU Standardised mortality ratios by NHS trust with 99.9% control limits, 2004 - 2006 combined: unadjusted

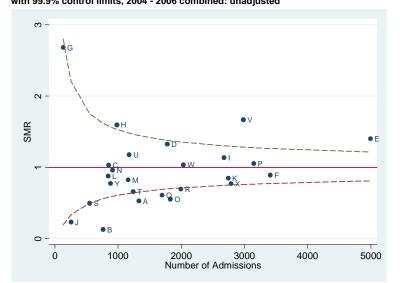



Figure 50b PICU Standardised mortality ratios by NHS trust with 99.9% control limits, 2004 - 2006 combined: risk adjusted (PIM)

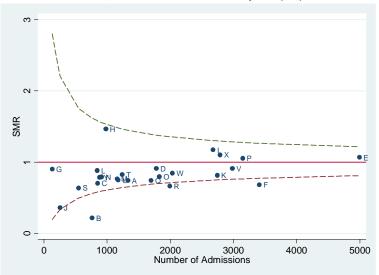



Figure 50c Risk adjusted mortality (PIM) by 2004 SHA in England and Wales, 2004 - 2006

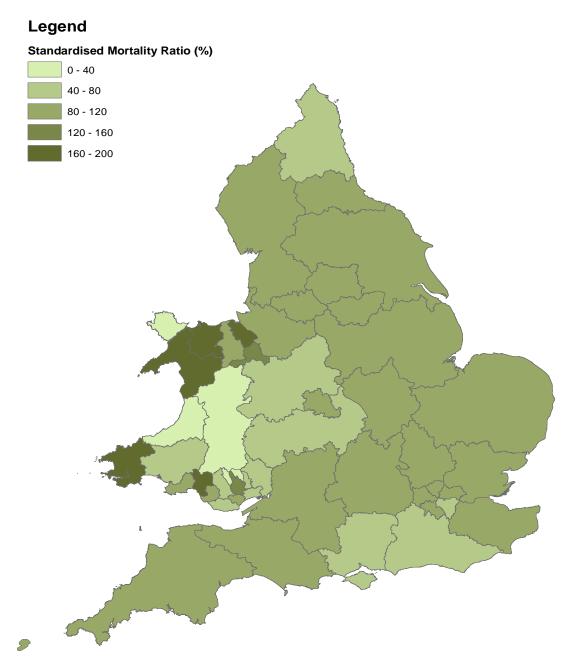
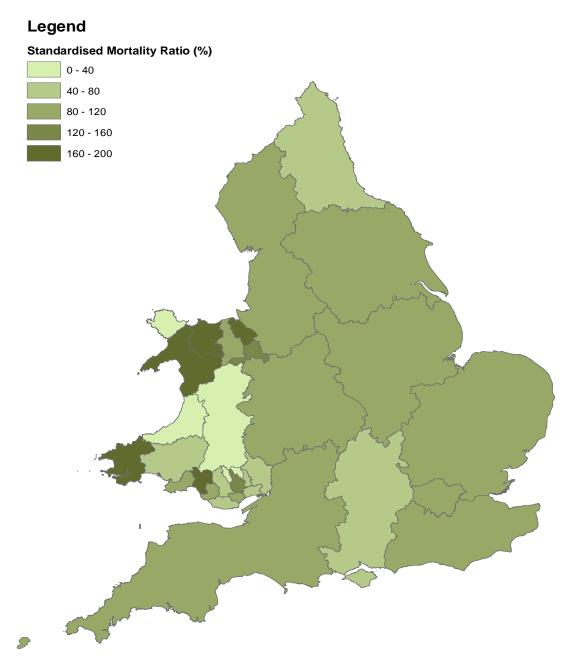




Figure 50d Risk adjusted mortality (PIM) by 2006 SHA in England and Wales, 2004 - 2006



Age Group (Years) Total Follow-Up Status 1-4 5-10 11-15 <1 <u>%</u> % % % % n n n n n (44.3) Alive 8,631 (46) 4,702 (25) 2,666 (14) 2,697 18,696 (14) 407 Dead (22) (10) 689 (59) 152 62 (9) 68 (1.6) Unknown (25) 22,836 (54.1) 11,191 (49) 5,695 3,195 (14) (12) 2,755 Total 20,229 (47.9) 10,549 42,221 (25.0) 5,923 (14.0) 5,520 (13.1)

Table 51 Admissions by follow-up status and age, 2004 - 2006

Table 52 Admissions by follow-up status and age (<1), 2004 - 2006

|                  |       |        | Ag    | e Group | o (Month | ıs)    |       |        |        |        |
|------------------|-------|--------|-------|---------|----------|--------|-------|--------|--------|--------|
| Follow-Up Status | <     | 1      | 1-    | -2      | 3-       | -5     | 6-    | 11     | Total  |        |
| _                | n     | %      | n     | %       | n        | %      | n     | %      | n      | %      |
|                  |       |        |       |         |          |        |       |        |        |        |
| Alive            | 2,865 | (33)   | 2,126 | (25)    | 1,761    | (20)   | 1,879 | (22)   | 8,631  | (42.7) |
| Dead             | 162   | (40)   | 94    | (23)    | 73       | (18)   | 78    | (19)   | 407    | (2.0)  |
| Unknown          | 4,096 | (37)   | 2,496 | (22)    | 2,173    | (19)   | 2,426 | (22)   | 11,191 | (55.3) |
| Total            | 7,123 | (35.2) | 4,716 | (23.3)  | 4,007    | (19.8) | 4,383 | (21.7) | 20,229 |        |

Table 53 Admissions by follow-up status and sex, 2004 - 2006

|                  |        |        |        | Sex    |       |       |         |       |        |        |
|------------------|--------|--------|--------|--------|-------|-------|---------|-------|--------|--------|
| Follow-Up Status | Ma     | le     | Fem    | ale    | Ambig | uous  | Unknown |       | Total  |        |
|                  | n      | %      | n      | %      | n     | %     | n       | %     | n      | %      |
|                  |        |        |        |        |       |       |         |       |        |        |
| Alive            | 10,669 | (57)   | 8,000  | (43)   | 4     | (0)   | 23      | (0)   | 18,696 | (44.3) |
| Dead             | 372    | (54)   | 316    | (46)   | 1     | (0)   | 0       | (0)   | 689    | (1.6)  |
| Unknown          | 12,949 | (57)   | 9,851  | (43)   | 9     | (0)   | 27      | (0)   | 22,836 | (54.1) |
| Total            | 23,990 | (56.8) | 18,167 | (43.0) | 14    | (0.0) | 50      | (0.1) | 42,221 |        |

Table 54 Admissions by follow-up status and sex (age<1), 2004 - 2006

|                  |        |        |       | Sex    |       |       |      |       |        |        |
|------------------|--------|--------|-------|--------|-------|-------|------|-------|--------|--------|
| Follow-Up Status | Ma     | le     | Fen   | nale   | Ambig | uous  | Unkn | own   | Tot    | al     |
|                  | n      | %      | n     | %      | n     | %     | n    | %     | n      | %      |
|                  |        |        |       |        |       |       |      |       |        |        |
| Alive            | 5,117  | (59)   | 3,498 | (41)   | 3     | (0)   | 13   | (0)   | 8,631  | (42.7) |
| Dead             | 213    | (52)   | 194   | (48)   | 0     | (0)   | 0    | (0)   | 407    | (2.0)  |
| Unknown          | 6,569  | (59)   | 4,600 | (41)   | 6     | (0)   | 16   | (0)   | 11,191 | (55.3) |
| Total            | 11,899 | (58.8) | 8,292 | (41.0) | 9     | (0.0) | 29   | (0.1) | 20,229 |        |

|        |           |            | 04 - 200     |          |                     |              |               |                |            |
|--------|-----------|------------|--------------|----------|---------------------|--------------|---------------|----------------|------------|
| Year   | NHS Trust | Aliv       |              |          | Jp State<br>ad<br>% | Unkn<br>n    | own<br>%      | Tot<br>n       | al<br>%    |
|        | -         |            |              |          |                     |              |               |                |            |
| 2004   | A<br>B    | 19<br>253  | (4)<br>(89)  | 0        | (0)<br>(2)          | 424<br>25    | (96)<br>(9)   | 443<br>285     | (3.<br>(2. |
|        | C         | 253        | (89)         | 5        | (2)                 | 17           | (9)           | 265            | (1         |
|        | D         | 483        | (83)         | 18       | (3)                 | 83           | (14)          | 584            | (4         |
|        | E         | 0          | (0)          | 0        | (0)                 | 1,778        | (100)         | 1,778          | (12        |
|        | F         | 0          | (0)          | 63       | (5)                 | 1,102        | (95)          | 1,165          | (8         |
|        | G         | 38         | (86)         | 2        | (5)                 | 4            | (9)           | 44             | (0         |
|        | н         | 18         | (6)          | 0        | (0)                 | 290          | (94)          | 308            | (2         |
|        | l<br>J    | 789<br>75  | (92)<br>(91) | 19<br>1  | (2)                 | 51<br>6      | (6)<br>(7)    | 859<br>82      | (6<br>(0   |
|        | ĸ         | 242        | (27)         | 8        | (1)                 | 633          | (72)          | 883            | (6         |
|        | L         | 176        | (78)         | 6        | (3)                 | 44           | (19)          | 226            | (1         |
|        | М         | 314        | (84)         | 10       | (3)                 | 49           | (13)          | 373            | (2         |
|        | Ν         | 8          | (2)          | 2        | (1)                 | 327          | (97)          | 337            | (2         |
|        | 0         | 482        | (87)         | 0        | (0)                 | 71           | (13)          | 553            | (4         |
|        | P<br>Q    | 916<br>445 | (93)         | 7<br>22  | (1)                 | 59<br>80     | (6)           | 982<br>547     | (7         |
|        | R         | 445        | (81)<br>(76) | 7        | (4)<br>(1)          | 133          | (15)<br>(23)  | 585            | (4<br>(4   |
|        | S         | 146        | (87)         | 6        | (4)                 | 15           | (20)          | 167            | (1         |
|        | т         | 0          | (0)          | 0        | (0)                 | 366          | (100)         | 366            | (2         |
|        | U         | 0          | (0)          | 0        | (0)                 | 392          | (100)         | 392            | (2         |
|        | V         | 887        | (90)         | 95       | (10)                | 1            | (0)           | 983            | (7         |
|        | W         | 0          | (0)          | 0        | (0)                 | 648          | (100)         | 648            | (4         |
|        | X<br>Y    | 468<br>17  | (49)<br>(85) | 12<br>0  | (1)                 | 484<br>3     | (50)<br>(15)  | 964<br>20      | (7<br>(0   |
| 2004 T |           | 6,463      | (46.7)       | 290      | (2.1)               | 7,085        | (51.2)        | 13,838         | (0         |
| 2005   | Α         | 32         | (8)          | 1        | (0)                 | 387          | (92)          | 420            | (3         |
| 2005   | В         | 202        | (87)         | 3        | (0)                 | 28           | (12)          | 233            | (1         |
|        | C         | 246        | (91)         | 6        | (2)                 | 19           | (7)           | 271            | (1         |
|        | D         | 513        | (88)         | 16       | (3)                 | 51           | (9)           | 580            | (4         |
|        | E         | 0          | (0)          | 0        | (0)                 | 1,515        | (100)         | 1,515          | (10        |
|        | F         | 8          | (1)          | 73       | (7)                 | 1,042        | (93)          | 1,123          | (8         |
|        | G         | 33         | (66)         | 0        | (0)                 | 17           | (34)          | 50             | (0         |
|        | H         | 19         | (6)          | 0        | (0)                 | 318<br>47    | (94)          | 337<br>853     | (2         |
|        | J         | 780<br>72  | (91)<br>(75) | 26<br>4  | (3)                 | 47           | (6)           | 853<br>96      | (6<br>(0   |
|        | ĸ         | 367        | (42)         | 21       | (2)                 | 496          | (56)          | 884            | (6         |
|        | L         | 224        | (82)         | 4        | (1)                 | 46           | (17)          | 274            | (1         |
|        | М         | 324        | (91)         | 3        | (1)                 | 28           | (8)           | 355            | (2         |
|        | N         | 21         | (7)          | 2        | (1)                 | 272          | (92)          | 295            | (2         |
|        | 0         | 479        | (78)         | 2        | (0)                 | 134          | (22)          | 615            | (4         |
|        | P<br>Q    | 917<br>531 | (90)<br>(91) | 18<br>14 | (2)<br>(2)          | 82<br>36     | (8)<br>(6)    | 1,017<br>581   | (7<br>(4   |
|        | R         | 512        | (77)         | 12       | (2)                 | 141          | (21)          | 665            | (4         |
|        | S         | 153        | (85)         | 2        | (1)                 | 25           | (14)          | 180            | (1         |
|        | т         | 0          | (0)          | 0        | (0)                 | 413          | (100)         | 413            | (2         |
|        | U         | 0          | (0)          | 0        | (0)                 | 408          | (100)         | 408            | (2         |
|        | V         | 0          | (0)          | 0        | (0)                 | 908          | (100)         | 908            | (6         |
|        | W         | 0          | (0)          | 0        | (0)                 | 701          | (100)         | 701            | (5         |
|        | X<br>Y    | 76<br>232  | (9)<br>(59)  | 9<br>1   | (1)<br>(0)          | 806<br>158   | (90)<br>(40)  | 891<br>391     | (6<br>(2   |
| 2005 T | otal      | 5,741      | (40.8)       | 217      | (1.5)               | 8,098        | (57.6)        | 14,056         |            |
| 2006   | Α         | 4          | (1)          | 1        | (0)                 | 444          | (99)          | 449            | (3         |
|        | в         | 176        | (78)         | 2        | (1)                 | 48           | (21)          | 226            | (1         |
|        | С         | 278        | (92)         | 6        | (2)                 | 17           | (6)           | 301            | (2         |
|        | D         | 494        | (87)         | 14       | (2)                 | 63           | (11)          | 571            | (4         |
|        | E<br>F    | 0<br>678   | (0)          | 0<br>71  | (0)                 | 1,600<br>337 | (100)         | 1,600<br>1,086 | (11        |
|        | F<br>G    | 678<br>23  | (62)<br>(64) | 71<br>1  | (7)                 | 337          | (31)<br>(33)  | 1,086          | (7<br>(0   |
|        | Н         | 5          | (04)         | 1        | (0)                 | 309          | (98)          | 315            | (2         |
|        | 1         | 832        | (92)         | 21       | (2)                 | 56           | (6)           | 909            | (6         |
|        | J         | 53         | (73)         | 2        | (3)                 | 18           | (25)          | 73             | (0         |
|        | к         | 238        | (26)         | 15       | (2)                 | 654          | (72)          | 907            | (6         |
|        | L         | 236        | (79)         | 1        | (0)                 | 62<br>47     | (21)          | 299<br>405     | (2         |
|        | N         | 355<br>201 | (88)<br>(73) | 3<br>2   | (1)<br>(1)          | 47           | (12)<br>(26)  | 405<br>275     | (2<br>(1   |
|        | 0         | 0          | (13)         | 0        | (0)                 | 655          | (100)         | 655            | (4         |
|        | Р         | 1,033      | (94)         | 11       | (1)                 | 58           | (5)           | 1,102          | (7         |
|        | Q         | 453        | (90)         | 8        | (2)                 | 42           | (8)           | 503            | (3         |
|        | R         | 476        | (73)         | 2        | (0)                 | 178          | (27)          | 656            | (4         |
|        | S         | 151        | (80)         | 3        | (2)                 | 34           | (18)          | 188            | (1         |
|        | Т         | 0          | (0)          | 0        | (0)                 | 442          | (100)         | 442            | (3         |
|        | U<br>V    | 46<br>0    | (13)<br>(0)  | 4        | (1)<br>(0)          | 317<br>1,046 | (86)<br>(100) | 367<br>1,046   | (2<br>(7   |
|        | W         | 0          | (0)          | 0        | (0)                 | 642          | (100)         | 642            | (4         |
|        | х         | 394        | (45)         | 11       | (1)                 | 472          | (54)          | 877            | (6         |
|        | Y         | 366        | (92)         | 3        | (1)                 | 28           | (7)           | 397            | (2         |
| 2006 T | otal      | 6,492      | (45.3)       | 182      | (1.3)               | 7,653        | (53.4)        | 14,327         |            |
| 2000 1 |           |            |              |          |                     |              |               |                |            |

|           |         | S       | ource of Pi | revious Ad | mission       |          |        |        |
|-----------|---------|---------|-------------|------------|---------------|----------|--------|--------|
| NHS Trust | Same NH | S Trust | Other NH    | S Trust    | No Previous A | dmission | Tot    | al     |
|           | n       | %       | n           | %          | n             | %        | n      | %      |
|           |         |         |             |            |               |          |        |        |
| Α         | 227     | (17)    | 27          | (2)        | 1,058         | (81)     | 1,312  | (3.1)  |
| В         | 187     | (25)    | 27          | (4)        | 530           | (71)     | 744    | (1.8)  |
| С         | 114     | (14)    | 26          | (3)        | 696           | (83)     | 836    | (2.0)  |
| D         | 334     | (19)    | 55          | (3)        | 1,346         | (78)     | 1,735  | (4.1)  |
| E         | 1,104   | (23)    | 298         | (6)        | 3,491         | (71)     | 4,893  | (11.6) |
| F         | 909     | (27)    | 199         | (6)        | 2,266         | (67)     | 3,374  | (8.0)  |
| G         | 5       | (4)     | 3           | (2)        | 122           | (94)     | 130    | (0.3)  |
| н         | 206     | (21)    | 68          | (7)        | 686           | (71)     | 960    | (2.3)  |
| I         | 589     | (22)    | 86          | (3)        | 1,946         | (74)     | 2,621  | (6.2)  |
| J         | 21      | (8)     | 24          | (10)       | 206           | (82)     | 251    | (0.6)  |
| К         | 758     | (28)    | 75          | (3)        | 1,841         | (69)     | 2,674  | (6.3)  |
| L         | 126     | (16)    | 33          | (4)        | 640           | (80)     | 799    | (1.9)  |
| М         | 169     | (15)    | 72          | (6)        | 892           | (79)     | 1,133  | (2.7)  |
| Ν         | 154     | (17)    | 27          | (3)        | 726           | (80)     | 907    | (2.1)  |
| 0         | 453     | (25)    | 62          | (3)        | 1,308         | (72)     | 1,823  | (4.3)  |
| Р         | 634     | (20)    | 76          | (2)        | 2,391         | (77)     | 3,101  | (7.3)  |
| Q         | 343     | (21)    | 63          | (4)        | 1,225         | (75)     | 1,631  | (3.9)  |
| R         | 444     | (23)    | 32          | (2)        | 1,430         | (75)     | 1,906  | (4.5)  |
| S         | 124     | (23)    | 31          | (6)        | 380           | (71)     | 535    | (1.3)  |
| Т         | 275     | (23)    | 73          | (6)        | 873           | (71)     | 1,221  | (2.9)  |
| U         | 111     | (10)    | 82          | (7)        | 974           | (83)     | 1,167  | (2.8)  |
| V         | 625     | (21)    | 118         | (4)        | 2,194         | (75)     | 2,937  | (7.0)  |
| W         | 398     | (20)    | 44          | (2)        | 1,549         | (78)     | 1,991  | (4.7)  |
| Х         | 774     | (28)    | 90          | (3)        | 1,868         | (68)     | 2,732  | (6.5)  |
| Υ         | 127     | (16)    | 1           | (0)        | 680           | (84)     | 808    | (1.9)  |
| Total     | 9,211   | (21.8)  | 1,692       | (4.0)      | 31,318        | (74.2)   | 42,221 |        |

| Table 56 Re-Admissions by NHS trust and source of previous admission, 20 | 004 - 2006 |
|--------------------------------------------------------------------------|------------|
|--------------------------------------------------------------------------|------------|

Table 57 Number of admissions of individual children by their NHS trust of first admission, 2004 - 2006

|           |        |        |       |        |       | Numb  | er of | Admis | sions |       |    |       |    |       |     |       |        |        |
|-----------|--------|--------|-------|--------|-------|-------|-------|-------|-------|-------|----|-------|----|-------|-----|-------|--------|--------|
| NHS Trust | 1      |        | 2     | 2      | 3     |       |       | 4     | !     | 5     |    | 6     |    | 7     | 8   | +     | Tot    | al     |
|           | n      | %      | n     | %      | n     | %     | n     | %     | n     | %     | n  | %     | n  | %     | n   | %     | n      | %      |
|           |        |        |       |        |       |       |       |       |       |       |    |       |    |       |     |       |        |        |
| Α         | 882    | (83)   | 111   | (10)   | 47    | (4)   | 7     | (1)   | 7     | (1)   | 2  | (0)   | 0  | (0)   | 2   | (0)   | 1,058  | (3.4)  |
| В         | 385    | (73)   | 87    | (16)   | 25    | (5)   | 14    | (3)   | 7     | (1)   | 3  | (1)   | 1  | (0)   | 8   | (2)   | 530    | (1.7)  |
| С         | 608    | (87)   | 54    | (8)    | 25    | (4)   | 4     | (1)   | 4     | (1)   | 0  | (0)   | 0  | (0)   | 1   | (0)   | 696    | (2.2)  |
| D         | 1,110  | (82)   | 147   | (11)   | 42    | (3)   | 24    | (2)   | 12    | (1)   | 3  | (0)   | 3  | (0)   | 5   | (0)   | 1,346  | (4.3)  |
| E         | 2,733  | (78)   | 486   | (14)   | 157   | (4)   | 66    | (2)   | 23    | (1)   | 12 | (0)   | 5  | (0)   | 9   | (0)   | 3,491  | (11.1) |
| F         | 1,646  | (73)   | 392   | (17)   | 140   | (6)   | 49    | (2)   | 15    | (1)   | 7  | (0)   | 5  | (0)   | 12  | (1)   | 2,266  | (7.2)  |
| G         | 97     | (80)   | 19    | (16)   | 5     | (4)   | 1     | (1)   | 0     | (0)   | 0  | (0)   | 0  | (0)   | 0   | (0)   | 122    | (0.4)  |
| н         | 552    | (80)   | 72    | (10)   | 39    | (6)   | 11    | (2)   | 5     | (1)   | 1  | (0)   | 4  | (1)   | 2   | (0)   | 686    | (2.2)  |
| I         | 1,557  | (80)   | 251   | (13)   | 88    | (5)   | 24    | (1)   | 11    | (1)   | 7  | (0)   | 3  | (0)   | 5   | (0)   | 1,946  | (6.2)  |
| J         | 148    | (72)   | 35    | (17)   | 13    | (6)   | 3     | (1)   | 4     | (2)   | 0  | (0)   | 1  | (0)   | 2   | (1)   | 206    | (0.7)  |
| к         | 1,386  | (75)   | 287   | (16)   | 87    | (5)   | 41    | (2)   | 21    | (1)   | 9  | (0)   | 5  | (0)   | 6   | (0)   | 1,842  | (5.9)  |
| L         | 543    | (85)   | 64    | (10)   | 16    | (3)   | 11    | (2)   | 0     | (0)   | 1  | (0)   | 1  | (0)   | 4   | (1)   | 640    | (2.0)  |
| М         | 746    | (84)   | 101   | (11)   | 17    | (2)   | 16    | (2)   | 6     | (1)   | 1  | (0)   | 2  | (0)   | 3   | (0)   | 892    | (2.8)  |
| N         | 602    | (83)   | 83    | (11)   | 26    | (4)   | 6     | (1)   | 3     | (0)   | 2  | (0)   | 1  | (0)   | 3   | (0)   | 726    | (2.3)  |
| 0         | 971    | (74)   | 228   | (17)   | 63    | (5)   | 26    | (2)   | 11    | (1)   | 4  | (0)   | 0  | (0)   | 4   | (0)   | 1,307  | (4.2)  |
| Р         | 1,971  | (82)   | 274   | (11)   | 82    | (3)   | 30    | (1)   | 18    | (1)   | 10 | (0)   | 3  | (0)   | 3   | (0)   | 2,391  | (7.6)  |
| Q         | 985    | (80)   | 160   | (13)   | 41    | (3)   | 15    | (1)   | 8     | (1)   | 6  | (0)   | 4  | (0)   | 6   | (0)   | 1,225  | (3.9)  |
| R         | 1,147  | (80)   | 177   | (12)   | 51    | (4)   | 31    | (2)   | 9     | (1)   | 6  | (0)   | 6  | (0)   | 3   | (0)   | 1,430  | (4.6)  |
| S         | 306    | (81)   | 45    | (12)   | 13    | (3)   | 7     | (2)   | 4     | (1)   | 1  | (0)   | 1  | (0)   | 3   | (1)   | 380    | (1.2)  |
| т         | 722    | (83)   | 103   | (12)   | 27    | (3)   | 8     | (1)   | 4     | (0)   | 2  | (0)   | 1  | (0)   | 6   | (1)   | 873    | (2.8)  |
| U         | 831    | (85)   | 102   | (10)   | 25    | (3)   | 8     | (1)   | 4     | (0)   | 0  | (0)   | 0  | (0)   | 4   | (0)   | 974    | (3.1)  |
| v         | 1,783  | (81)   | 278   | (13)   | 73    | (3)   | 33    | (2)   | 15    | (1)   | 6  | (0)   | 1  | (0)   | 6   | (0)   | 2,195  | (7.0)  |
| w         | 1,283  | (83)   | 161   | (10)   | 54    | (3)   | 23    | (1)   | 12    | (1)   | 7  | (0)   | 3  | (0)   | 6   | (0)   | 1,549  | (4.9)  |
| х         | 1,377  | (74)   | 292   | (16)   | 105   | (6)   | 48    | (3)   | 20    | (1)   | 9  | (0)   | 10 | (1)   | 7   | (0)   | 1,868  | (6.0)  |
| Y         | 590    | (87)   | 68    | (10)   | 13    | (2)   | 6     | (1)   | 2     | (0)   | 0  | (0)   | 1  | (0)   | 1   | (0)   | 681    | (2.2)  |
| Total     | 24,961 | (79.7) | 4,077 | (13.0) | 1,274 | (4.1) | 512   | (1.6) | 225   | (0.7) | 99 | (0.3) | 61 | (0.2) | 111 | (0.4) | 31,320 |        |

| Table 58 Number of individual children by NHS trust and diagnostic group of first admission, 2004 - 2006 |
|----------------------------------------------------------------------------------------------------------|
|                                                                                                          |

|           |             |         |               |            |          |        |               |       |           |       | Diagn | ostic Gr |          |       |          |         |         |        |       |       |        |        |       |       |       |       |           |        |        |
|-----------|-------------|---------|---------------|------------|----------|--------|---------------|-------|-----------|-------|-------|----------|----------|-------|----------|---------|---------|--------|-------|-------|--------|--------|-------|-------|-------|-------|-----------|--------|--------|
| NHS Trust | Blood / lyn | nphatic | Body wall and | d cavities | Cardiova |        | Endocrine / m |       | Gastroint |       | Infec |          | Multisys |       | Musculos | keletal | Neurolo | ogical | Oncol | ogy   | Respir | ratory | Trau  | ma    | Othe  | er    | Missing   | Tota   | al     |
|           | n           | %       | n             | %          | n        | %      | n             | %     | n         | %     | n     | %        | n        | %     | n        | %       | n       | %      | n     | %     | n      | %      | n     | %     | n     | %     | n %       | n      | %      |
| _         |             |         |               |            |          |        |               |       |           |       |       |          |          |       |          |         |         |        |       |       |        |        |       |       |       |       |           |        |        |
| A         | 14          | (1)     | 22            | (2)        | 28       | (3)    | 32            | (3)   | 105       | (10)  | 57    | (5)      | 12       | (1)   | 48       | (5)     | 205     | (19)   | 149   | (14)  | 220    | (21)   | 80    | (8)   | 85    | (8)   | 1 (0)     |        | (3.4)  |
| в         | 4           | (1)     | 32            | (6)        | 16       | (3)    | 19            | (4)   | 100       | (19)  | 38    | (7)      | 0        | (0)   | /        | (1)     | 64      | (12)   | /     | (1)   | 166    | (31)   | 22    | (4)   | 50    | (9)   | 5 (1)     | 530    | (1.7)  |
| C         | 6           | (1)     | 12            | (2)        | 19       | (3)    | 16            | (2)   | 29        | (4)   | 77    | (11)     | 3        | (0)   | 98       | (14)    | 101     | (15)   | 29    | (4)   | 202    | (29)   | 62    | (9)   | 42    | (6)   | 0 (0)     | 696    | (2.2)  |
| D         | 21          | (2)     | 13            | (1)        | 67       | (5)    | 37            | (3)   | 70        | (5)   | 117   | (9)      | 3        | (0)   | 61       | (5)     | 229     | (17)   | 74    | (5)   | 450    | (33)   | 140   | (10)  | 64    | (5)   | 0 (0)     | 1,346  | (4.3)  |
| E         | 24          | (1)     | 92            | (3)        | 1,371    | (39)   | 94            | (3)   | 234       | (7)   | 113   | (3)      | 6        | (0)   | 83       | (2)     | 334     | (10)   | 95    | (3)   | 747    | (21)   | 165   | (5)   | 133   | (4)   | 0 (0)     |        | (11.1) |
| F         | 5           | (0)     | 19            | (1)        | 972      | (43)   | 49            | (2)   | 25        | (1)   | 125   | (6)      | 1        | (0)   | 90       | (4)     | 251     | (11)   | 5     | (0)   | 565    | (25)   | 48    | (2)   | 93    | (4)   | 18 (1)    | 2,266  | (7.2)  |
| G         | 0           | (0)     | 0             | (0)        | 5        | (4)    | 2             | (2)   | 5         | (4)   | 21    | (17)     | 0        | (0)   | 0        | (0)     | 50      | (41)   | 3     | (2)   | 16     | (13)   | 12    | (10)  | 8     | (7)   | 0 (0)     | 122    | (0.4)  |
| н         | 14          | (2)     | 14            | (2)        | 16       | (2)    | 26            | (4)   | 137       | (20)  | 23    | (3)      | 0        | (0)   | 4        | (1)     | 129     | (19)   | 22    | (3)   | 92     | (13)   | 86    | (13)  | 122   | (18)  | 1 (0)     | 686    | (2.2)  |
|           | 18          | (1)     | 10            | (1)        | 738      | (38)   | 48            | (2)   | 100       | (5)   | 91    | (5)      | 3        | (0)   | 59       | (3)     | 167     | (9)    | 99    | (5)   | 381    | (20)   | 106   | (5)   | 117   | (6)   | 9 (0)     | 1,946  | (6.2)  |
| J         | 6           | (3)     | 15            | (7)        | 6        | (3)    | 6             | (3)   | 54        | (26)  | 6     | (3)      | 0        | (0)   | 0        | (0)     | 31      | (15)   | 4     | (2)   | 57     | (28)   | 3     | (1)   | 17    | (8)   | 1 (0)     | 206    | (0.7)  |
| ĸ         | 13          | (1)     | 121           | (7)        | 548      | (30)   | 28            | (2)   | 213       | (12)  | 104   | (6)      | 4        | (0)   | 39       | (2)     | 185     | (10)   | 111   | (6)   | 299    | (16)   | 83    | (5)   | 93    | (5)   | 1 (0)     | 1,842  | (5.9)  |
| L         | 3           | (0)     | /             | (1)        | 22       | (3)    | 26            | (4)   | 16        | (3)   | 33    | (5)      | 0        | (0)   | 64       | (10)    | 136     | (21)   | 2     | (0)   | 280    | (44)   | 15    | (2)   | 35    | (5)   | 1 (0)     | 640    | (2.0)  |
| M         | 5           | (1)     | 12            | (1)        | 22       | (2)    | 38            | (4)   | 64        | (7)   | 77    | (9)      | 2        | (0)   | 92       | (10)    | 130     | (15)   | 70    | (8)   | 278    | (31)   | 60    | (7)   | 42    | (5)   | 0 (0)     | 892    | (2.8)  |
| N         | 2           | (0)     | 23            | (3)        | 262      | (36)   | 13            | (2)   | 23        | (3)   | 21    | (3)      | 3        | (0)   | 47       | (6)     | 93      | (13)   | 30    | (4)   | 151    | (21)   | 43    | (6)   | 14    | (2)   | 1 (0)     | 726    | (2.3)  |
| 0         | 0           | (0)     | 2             | (0)        | 1,144    | (88)   | 1             | (0)   | 9         | (1)   | 8     | (1)      | 0        | (0)   | 11       | (1)     | 2       | (0)    | 10    | (1)   | 91     | (7)    | 1     | (0)   | 8     | (1)   | 20 (2)    |        | (4.2)  |
| P         | 8           | (0)     | 106           | (4)        | 999      | (42)   | 20            | (1)   | 97        | (4)   | 113   | (5)      | 5        | (0)   | 119      | (5)     | 231     | (10)   | 80    | (3)   | 425    | (18)   | 126   | (5)   | 61    | (3)   | 1 (0)     | 2,391  | (7.6)  |
| Q         | 12          | (1)     | 57            | (5)        | 25       | (2)    | 35            | (3)   | 137       | (11)  | 86    | (7)      | 0        | (0)   | 92       | (8)     | 180     | (15)   | 70    | (6)   | 403    | (33)   | 75    | (6)   | 49    | (4)   | 4 (0)     | 1,225  | (3.9)  |
| R         |             | (0)     | 23            | (2)        | 483      | (34)   | 18            | (1)   | 148       | (10)  | 58    | (4)      | 4        | (0)   | 97       | (7)     | 180     | (13)   | 42    | (3)   | 257    | (18)   | 61    | (4)   | 52    | (4)   | 0 (0)     | 1,430  | (4.6)  |
| s         | 1           | (0)     | 0             | (0)        | 9        | (2)    | 26            | (7)   | 3         | (1)   | 17    | (4)      | 0        | (0)   | 32       | (8)     | 59      | (16)   | 0     | (0)   | 172    | (45)   | 37    | (10)  | 24    | (6)   | 0 (0)     |        | (1.2)  |
| T         | 19          | (2)     | 11            | (1)        | 15       | (2)    | 18            | (2)   | 113       | (13)  | 44    | (5)      | 1        | (0)   | 13       | (1)     | 120     | (14)   | 147   | (17)  | 281    | (32)   | 54    | (6)   | 36    | (4)   | 1 (0)     | 873    | (2.8)  |
| U         | 26          | (3)     | 3             | (0)        | 39       | (4)    | 40            | (4)   | 23        | (2)   | 114   | (12)     | 0        | (0)   | 0        | (0)     | 237     | (24)   | 2     | (0)   | 419    | (43)   | 9     | (1)   | 37    | (4)   | 25 (3)    |        | (3.1)  |
| V         | 15          | (1)     | 54            | (2)        | 890      | (41)   | 70            | (3)   | 209       | (10)  | 58    | (3)      | 4        | (0)   | 32       | (1)     | 170     | (8)    | 21    | (1)   | 343    | (16)   | 170   | (8)   | 48    | (2)   | 111 (5    | 2,195  | (7.0)  |
| W         | 10          | (1)     | 12            | (1)        | 700      | (45)   | 33            | (2)   | 44        | (3)   | 84    | (5)      | 0        | (0)   | 14       | (1)     | 220     | (14)   | 46    | (3)   | 322    | (21)   | 15    | (1)   | 46    | (3)   | 3 (0)     | 1,549  | (4.9)  |
| X         | 16          | (1)     | 38            | (2)        | 833      | (45)   | 24            | (1)   | 118       | (6)   | 95    | (5)      | 4        | (0)   | 15       | (1)     | 154     | (8)    | 44    | (2)   | 395    | (21)   | 68    | (4)   | 58    | (3)   | 6 (0      | 1,868  | (6.0)  |
| Y         | 0           | (0)     | 18            | (3)        | 24       | (4)    | 10            | (1)   | 42        | (6)   | 51    | (7)      | 3        | (0)   | 131      | (19)    | 113     | (17)   | 32    | (5)   | 171    | (25)   | 48    | (7)   | 38    | (6)   | 0 (0)     | 681    | (2.2)  |
| Total     | 249         | (0.8)   | 716           | (2.3)      | 9,253    | (29.5) | 729           | (2.3) | 2,118     | (6.8) | 1,631 | (5.2)    | 58       | (0.2) | 1,248    | (4.0)   | 3,771   | (12.0) | 1,194 | (3.8) | 7,183  | (22.9) | 1,589 | (5.1) | 1,372 | (4.4) | 209 (0.7) | 31,320 |        |

Table 59 Individual child admissions by diagnostic group and readmission status, 2004 - 2006

| Diagnostic Group       | Sing   | gle    | Multiple (* | 1 trust) | Multiple (2+ | - trusts) | Tot    | al     |
|------------------------|--------|--------|-------------|----------|--------------|-----------|--------|--------|
|                        | n      | %      | n           | %        | n            | %         | n      | %      |
| Dia ad / human hatia   | 000    | (00)   | 20          | (4.0)    | 40           | ( 4 )     | 0.40   | (0, 0) |
| Blood / lymphatic      | 200    | (80)   | 39          | (16)     | 10           | (4)       | 249    | (0.8)  |
| Body wall and cavities | 562    | (78)   | 127         | (18)     | 27           | (4)       | 716    | (2.3)  |
| Cardiovascular         | 6,861  | (74)   | 2,060       | (22)     | 332          | (4)       | 9,253  | (29.5) |
| Endocrine / metabolic  | 622    | (85)   | 73          | (10)     | 34           | (5)       | 729    | (2.3)  |
| Gastrointestinal       | 1,617  | (76)   | 416         | (20)     | 85           | (4)       | 2,118  | (6.8)  |
| Infection              | 1,427  | (87)   | 148         | (9)      | 56           | (3)       | 1,631  | (5.2)  |
| Missing                | 161    | (77)   | 38          | (18)     | 10           | (5)       | 209    | (0.7)  |
| Multisystem            | 41     | (71)   | 16          | (28)     | 1            | (2)       | 58     | (0.2)  |
| Musculoskeletal        | 1,070  | (86)   | 161         | (13)     | 17           | (1)       | 1,248  | (4.0)  |
| Neurological           | 3,186  | (84)   | 449         | (12)     | 136          | (4)       | 3,771  | (12.0) |
| Oncology               | 914    | (77)   | 254         | (21)     | 26           | (2)       | 1,194  | (3.8)  |
| Other                  | 1,137  | (83)   | 190         | (14)     | 45           | (3)       | 1,372  | (4.4)  |
| Respiratory            | 5,647  | (79)   | 1,087       | (15)     | 449          | (6)       | 7,183  | (22.9) |
| Trauma                 | 1,516  | (95)   | 47          | (3)      | 26           | (2)       | 1,589  | (5.1)  |
| Total                  | 24,961 | (79.7) | 5,105       | (16.3)   | 1,254        | (4.0)     | 31,320 |        |

|        |           |               |       |            |       | Pre   | valence Ra | tes   |       |           |       |
|--------|-----------|---------------|-------|------------|-------|-------|------------|-------|-------|-----------|-------|
| Sex    | Age Group | Population    | 20    | 004 (95% C | I)    | 20    | 005 (95% C | I)    | 20    | 06 (95% C | l)    |
|        | (Years)   | (2001 Census) | Rate  | Lower      | Upper | Rate  | Lower      | Upper | Rate  | Lower     | Upper |
| Male   | <1        | 300,385       | 1,290 | 1,250      | 1,331 | 1,258 | 1,219      | 1,298 | 1,233 | 1,194     | 1,273 |
|        | 1-4       | 1,287,498     | 160   | 154        | 167   | 158   | 151        | 165   | 164   | 157       | 171   |
|        | 5-10      | 2,061,047     | 39    | 37         | 42    | 38    | 35         | 41    | 40    | 37        | 42    |
|        | 11-15     | 1,741,056     | 55    | 52         | 59    | 53    | 50         | 57    | 52    | 49        | 56    |
| Female | <1        | 288,676       | 910   | 876        | 945   | 888   | 854        | 922   | 938   | 903       | 973   |
|        | 1-4       | 1,228,576     | 134   | 128        | 141   | 136   | 129        | 142   | 135   | 128       | 141   |
|        | 5-10      | 1,962,167     | 32    | 29         | 34    | 33    | 31         | 36    | 33    | 31        | 36    |
|        | 11-15     | 1,655,909     | 48    | 45         | 52    | 48    | 45         | 52    | 49    | 46        | 52    |
| Total  |           | 10,525,314    | 128   | 125        | 130   | 126   | 124        | 128   | 128   | 126       | 130   |

 Table 60 Age specific prevalence (per 100,000 per year) for admission

 to paediatric intensive care in England and Wales, 2004 - 2006

# Table 61a Age-sex standardised prevalence (per 100,000 per year) for admissions to paediatric intensive care by 2004 SHA in England and Wales, 2004 - 2006

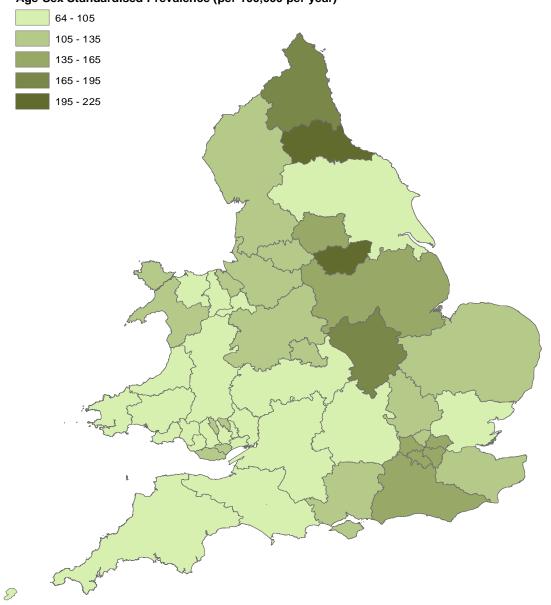
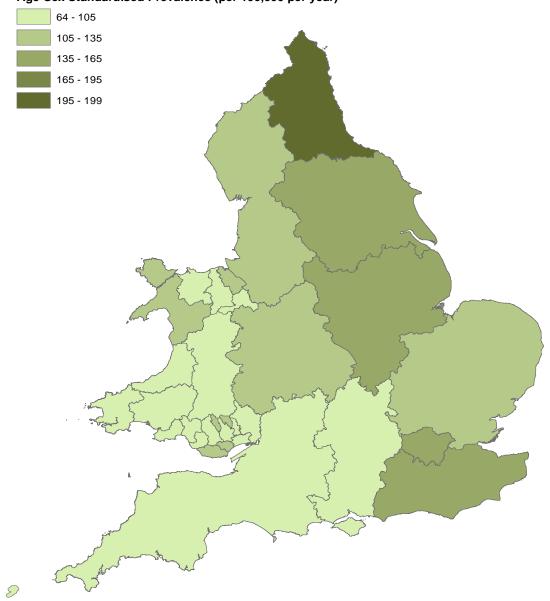

|         |                                                    |               |      |            |       |      |            | Preval |      |            |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|---------|----------------------------------------------------|---------------|------|------------|-------|------|------------|--------|------|------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Country | SHA / HB                                           | Population    |      | 004 (95% C |       |      | 005 (95% C |        |      | 006 (95% C |       |      | - 2006 (95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|         |                                                    | (2001 Census) | Rate | Lower      | Upper | Rate | Lower      | Upper  | Rate | Lower      | Upper | Rate | Lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Upper |
| ngland  | Northumberland, Tyne & Wear                        | 267,082       | 176  | 160        | 192   | 179  | 163        | 195    | 172  | 156        | 188   | 176  | 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18    |
| -       | County Durham and Tees Valley                      | 230,897       | 219  | 200        | 239   | 214  | 195        | 234    | 240  | 220        | 261   | 225  | 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23    |
|         | North and East Yorkshire and Northern Lincolnshire | 319,133       | 106  | 94         | 118   | 96   | 85         | 107    | 96   | 85         | 107   | 99   | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10    |
|         | South Yorkshire                                    | 255,956       | 184  | 167        | 200   | 216  | 198        | 234    | 202  | 185        | 220   | 201  | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21    |
|         | West Yorkshire                                     | 442,102       | 139  | 128        | 150   | 144  | 133        | 155    | 143  | 132        | 154   | 142  | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14    |
|         | Cumbria and Lancashire                             | 385,645       | 102  | 92         | 113   | 108  | 98         | 119    | 109  | 99         | 120   | 107  | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11    |
|         | Greater Manchester                                 | 527,530       | 106  | 98         | 115   | 121  | 111        | 130    | 124  | 115        | 134   | 117  | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12    |
|         | Cheshire & Merseyside                              | 479,363       | 136  | 126        | 147   | 121  | 111        | 131    | 126  | 116        | 136   | 128  | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1:    |
|         | Trent                                              | 522,819       | 161  | 150        | 172   | 142  | 131        | 152    | 145  | 135        | 156   | 149  | 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | Shropshire and Staffordshire                       | 297,099       | 112  | 100        | 124   | 119  | 106        | 131    | 129  | 116        | 142   | 120  | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | Birmingham and the Black Country                   | 500,572       | 104  | 95         | 113   | 104  | 96         | 113    | 132  | 122        | 142   | 113  | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | West Midlands South                                | 302,966       | 86   | 76         | 97    | 87   | 76         | 97     | 105  | 93         | 117   | 93   | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|         | Leicestershire, Northamptonshire and Rutland       | 322,182       | 195  | 180        | 210   | 175  | 160        | 189    | 165  | 151        | 179   | 178  | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10    |
|         | Norfolk, Suffolk and Cambridgeshire                | 419,111       | 123  | 112        | 134   | 109  | 99         | 119    | 109  | 99         | 119   | 114  | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | Essex                                              | 325,771       | 102  | 91         | 113   | 87   | 77         | 97     | 94   | 84         | 105   | 94   | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
|         | Bedfordshire and Hertfordshire                     | 338,631       | 113  | 102        | 124   | 118  | 107        | 129    | 114  | 103        | 126   | 115  | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | Thames Valley                                      | 432,767       | 91   | 82         | 100   | 91   | 82         | 100    | 77   | 69         | 85    | 86   | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|         | North East London                                  | 338,340       | 148  | 136        | 161   | 135  | 123        | 146    | 144  | 132        | 156   | 142  | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | North Central London                               | 231,673       | 137  | 123        | 152   | 130  | 116        | 144    | 129  | 115        | 143   | 132  | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | North West London                                  | 325,721       | 135  | 123        | 147   | 146  | 134        | 159    | 135  | 123        | 147   | 139  | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | South West London                                  | 249,993       | 163  | 148        | 178   | 153  | 139        | 168    | 148  | 133        | 162   | 154  | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | South East London                                  | 305,159       | 156  | 142        | 169   | 151  | 137        | 164    | 154  | 141        | 167   | 153  | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | Kent and Medway                                    | 333,181       | 120  | 108        | 132   | 121  | 109        | 133    | 112  | 100        | 124   | 118  | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | Surrey and Sussex                                  | 487,915       | 162  | 151        | 173   | 151  | 140        | 162    | 157  | 146        | 168   | 157  | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | Hampshire and Isle of Wight                        | 355,131       | 120  | 109        | 131   | 127  | 115        | 139    | 122  | 110        | 133   | 123  | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | Avon, Gloucestershire and Wiltshire                | 429,147       | 108  | 98         | 118   | 102  | 92         | 111    | 98   | 88         | 107   | 102  | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
|         | Dorset and Somerset                                | 220,268       | 105  | 91         | 119   | 100  | 87         | 114    | 104  | 91         | 118   | 103  | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
|         | South West Peninsula                               | 292,673       | 59   | 50         | 68    | 76   | 65         | 86     | 67   | 57         | 76    | 67   | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|         |                                                    |               |      |            |       |      |            |        |      |            |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| ales    | Anglesey                                           | 13,110        | 141  | 76         | 206   | 113  | 54         | 172    | 126  | 65         | 188   | 127  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
|         | Blaenau Gwent                                      | 14,819        | 70   | 27         | 114   | 162  | 93         | 231    | 114  | 56         | 171   | 116  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
|         | Bridgend                                           | 26,370        | 92   | 55         | 129   | 49   | 22         | 75     | 107  | 67         | 146   | 83   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
|         | Caerphilly Teaching                                | 36,521        | 122  | 86         | 158   | 94   | 62         | 125    | 79   | 51         | 108   | 98   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
|         | Cardiff                                            | 62,982        | 133  | 105        | 161   | 111  | 85         | 137    | 151  | 121        | 181   | 132  | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
|         | Carmarthenshire                                    | 33,543        | 67   | 39         | 95    | 80   | 49         | 111    | 92   | 59         | 124   | 80   | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|         | Ceredigion                                         | 12,584        | 97   | 42         | 152   | 57   | 15         | 99     | 51   | 13         | 89    | 68   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|         | Conwy                                              | 20,271        | 123  | 74         | 173   | 52   | 20         | 84     | 112  | 65         | 159   | 96   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
|         | Denbighshire                                       | 18,304        | 109  | 60         | 158   | 102  | 55         | 150    | 93   | 48         | 139   | 102  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
|         | Flintshire                                         | 30,437        | 80   | 48         | 113   | 121  | 82         | 160    | 117  | 78         | 155   | 106  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
|         | Gwynedd                                            | 22,582        | 95   | 56         | 134   | 112  | 70         | 154    | 122  | 78         | 166   | 110  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
|         | Merthyr Tydfil                                     | 12,071        | 57   | 12         | 102   | 149  | 76         | 222    | 153  | 81         | 225   | 120  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
|         | Monmouthshire                                      | 16,750        | 52   | 16         | 87    | 53   | 16         | 89     | 90   | 43         | 137   | 65   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|         | Neath Port Talbot                                  | 26,390        | 73   | 40         | 106   | 80   | 45         | 115    | 105  | 65         | 145   | 86   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
|         | Newport                                            | 30,852        | 118  | 79         | 156   | 112  | 75         | 150    | 82   | 50         | 114   | 104  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
|         | Pembrokeshire                                      | 23,334        | 53   | 23         | 82    | 88   | 49         | 126    | 79   | 42         | 115   | 73   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|         | Powys Teaching                                     | 24,495        | 63   | 30         | 95    | 83   | 45         | 120    | 59   | 28         | 90    | 68   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|         | Rhondda Cynon Taff Teaching                        | 48,366        | 99   | 71         | 128   | 131  | 98         | 163    | 71   | 47         | 95    | 101  | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
|         | Swansea                                            | 42,458        | 102  | 72         | 132   | 85   | 57         | 113    | 80   | 53         | 107   | 89   | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|         | Torfaen                                            | 19,451        | 81   | 38         | 124   | 97   | 52         | 142    | 128  | 74         | 181   | 102  | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|         | Vale of Glamorgan                                  | 25,489        | 81   | 46         | 117   | 115  | 72         | 157    | 152  | 104        | 201   | 116  | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
|         | Wrexham                                            | 25,308        | 93   | 56         | 130   | 107  | 68         | 147    | 93   | 56         | 130   | 98   | 213<br>93<br>191<br>135<br>515<br>101<br>112<br>122<br>123<br>112<br>108<br>86<br>1108<br>88<br>81<br>1108<br>88<br>81<br>108<br>88<br>81<br>108<br>88<br>81<br>108<br>88<br>81<br>108<br>88<br>109<br>81<br>135<br>51<br>124<br>132<br>146<br>1124<br>132<br>146<br>1124<br>132<br>146<br>1124<br>132<br>146<br>1124<br>132<br>146<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1124<br>143<br>1135<br>124<br>146<br>1111<br>150<br>166<br>1124<br>146<br>1124<br>146<br>1124<br>146<br>1124<br>146<br>1124<br>146<br>146<br>146<br>146<br>146<br>146<br>146<br>146<br>146<br>14 | 1     |
|         |                                                    |               |      |            |       |      |            |        |      |            |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| otal    |                                                    | 10,525,314    | 127  | 125        | 130   | 126  | 123        | 128    | 127  | 125        | 129   | 127  | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |

Table 61b Age-sex standardised prevalence (per 100,000 per year) for admissions to paediatric intensive care by 2006 SHA in England and Wales, 2004 - 2006

|         |                             |               |      |            |       |      |            | Preval | ence |            |       |      |            |       |
|---------|-----------------------------|---------------|------|------------|-------|------|------------|--------|------|------------|-------|------|------------|-------|
| Country | SHA / HB                    | Population    | 20   | 004 (95% C | I)    | 20   | 005 (95% C | 1)     | 20   | 006 (95% C | ;I)   | 2004 | - 2006 (95 | % CI) |
| -       |                             | (2001 Census) | Rate | Lower      | Upper | Rate | Lower      | Upper  | Rate | Lower      | Upper | Rate | Lower      | Upper |
| England | North East                  | 497.979       | 196  | 183        | 209   | 195  | 183        | 208    | 206  | 193        | 219   | 199  | 192        | 206   |
|         | North West                  | 1,392,515     | 115  | 110        | 121   | 118  | 112        | 123    | 121  | 115        | 127   | 118  | 115        | 121   |
|         | Yorkshire and the Humber    | 1,017,150     | 140  | 133        | 148   | 147  | 140        | 155    | 145  | 137        | 152   | 144  | 140        | 148   |
|         | East Midlands               | 844,980       | 175  | 166        | 184   | 155  | 147        | 164    | 155  | 147        | 164   | 162  | 157        | 167   |
|         | West Midlands               | 1,100,748     | 101  | 95         | 107   | 103  | 97         | 109    | 125  | 118        | 131   | 110  | 106        | 113   |
|         | East of England             | 1,083,270     | 114  | 108        | 120   | 106  | 100        | 112    | 109  | 103        | 116   | 110  | 106        | 113   |
|         | London                      | 1,451,005     | 148  | 142        | 153   | 143  | 137        | 149    | 143  | 138        | 149   | 145  | 141        | 148   |
|         | South East Coast            | 821,193       | 146  | 137        | 154   | 140  | 131        | 148    | 139  | 131        | 147   | 141  | 137        | 146   |
|         | South Central               | 787,804       | 104  | 97         | 111   | 107  | 100        | 114    | 98   | 91         | 105   | 103  | 99         | 107   |
|         | South West                  | 942,183       | 92   | 86         | 98    | 93   | 87         | 100    | 90   | 84         | 96    | 92   | 88         | 95    |
| Wales   | Anglesev                    | 13.110        | 141  | 76         | 206   | 113  | 54         | 172    | 126  | 65         | 188   | 127  | 91         | 163   |
| wales   | Blaenau Gwent               | 14.819        | 70   | 27         | 206   | 162  | 93         | 231    | 114  | 56         | 171   | 127  | 82         | 163   |
|         | Bridgend                    | 26.370        | 92   | 55         | 129   | 49   | 22         | 231    | 107  | 50<br>67   | 146   | 83   | 63         | 149   |
|         | Caerphilly Teaching         | 36.521        | 122  | 86         | 129   | 94   | 62         | 125    | 79   | 51         | 140   | 98   | 80         | 117   |
|         | Cardiff                     | 62.982        | 133  | 105        | 161   | 111  | 85         | 123    | 151  | 121        | 181   | 132  | 116        | 148   |
|         | Carmarthenshire             | 33.543        | 67   | 39         | 95    | 80   | 49         | 111    | 92   | 59         | 124   | 80   | 62         | 97    |
|         | Cerediaion                  | 12.584        | 97   | 42         | 152   | 57   | 49         | 99     | 51   | 13         | 89    | 68   | 42         | 97    |
|         | Conwy                       | 20.271        | 123  | 74         | 173   | 52   | 20         | 84     | 112  | 65         | 159   | 96   | 71         | 121   |
|         | Denbighshire                | 18.304        | 109  | 60         | 158   | 102  | 55         | 150    | 93   | 48         | 139   | 102  | 74         | 129   |
|         | Flintshire                  | 30,437        | 80   | 48         | 113   | 121  | 82         | 160    | 117  | 78         | 155   | 106  | 85         | 127   |
|         | Gwynedd                     | 22.582        | 95   | 56         | 134   | 112  | 70         | 154    | 122  | 78         | 166   | 110  | 86         | 134   |
|         | Merthyr Tydfil              | 12,002        | 57   | 12         | 102   | 149  | 76         | 222    | 153  | 81         | 225   | 120  | 82         | 154   |
|         | Monmouthshire               | 16,750        | 52   | 16         | 87    | 53   | 16         | 89     | 90   | 43         | 137   | 65   | 41         | 88    |
|         | Neath Port Talbot           | 26,390        | 73   | 40         | 106   | 80   | 45         | 115    | 105  | 65         | 145   | 86   | 65         | 107   |
|         | Newport                     | 30.852        | 118  | 79         | 156   | 112  | 75         | 150    | 82   | 50         | 114   | 104  | 83         | 125   |
|         | Pembrokeshire               | 23.334        | 53   | 23         | 82    | 88   | 49         | 126    | 79   | 42         | 115   | 73   | 53         | 93    |
|         | Powys Teaching              | 24,495        | 63   | 30         | 95    | 83   | 45         | 120    | 59   | 28         | 90    | 68   | 49         | 88    |
|         | Rhondda Cynon Taff Teaching | 48,366        | 99   | 71         | 128   | 131  | 98         | 163    | 71   | 47         | 95    | 101  | 84         | 117   |
|         | Swansea                     | 42,458        | 102  | 72         | 132   | 85   | 57         | 113    | 80   | 53         | 107   | 89   | 72         | 105   |
|         | Torfaen                     | 19,451        | 81   | 38         | 124   | 97   | 52         | 142    | 128  | 74         | 181   | 102  | 75         | 129   |
|         | Vale of Glamorgan           | 25,489        | 81   | 46         | 117   | 115  | 72         | 157    | 152  | 104        | 201   | 116  | 92         | 141   |
|         | Wrexham                     | 25,308        | 93   | 56         | 130   | 107  | 68         | 147    | 93   | 56         | 130   | 98   | 76         | 120   |
|         |                             |               |      |            |       |      |            |        |      |            |       |      |            |       |
| Total   |                             | 10,525,314    | 128  | 125        | 130   | 126  | 124        | 128    | 128  | 126        | 130   | 127  | 125        | 129   |

Figure 61a Age-Sex standardised prevalence (per 100,000 per year) for admissions to paediatric intensive care by 2004 SHA in England and Wales, 2004 - 2006


# Legend



Age-Sex Standardised Prevalence (per 100,000 per year)

Figure 61b Age-Sex standardised prevalence (per 100,000 per year) for admissions to paediatric intensive care by 2006 SHA in England and Wales, 2004 - 2006

### Legend



Age-Sex Standardised Prevalence (per 100,000 per year)

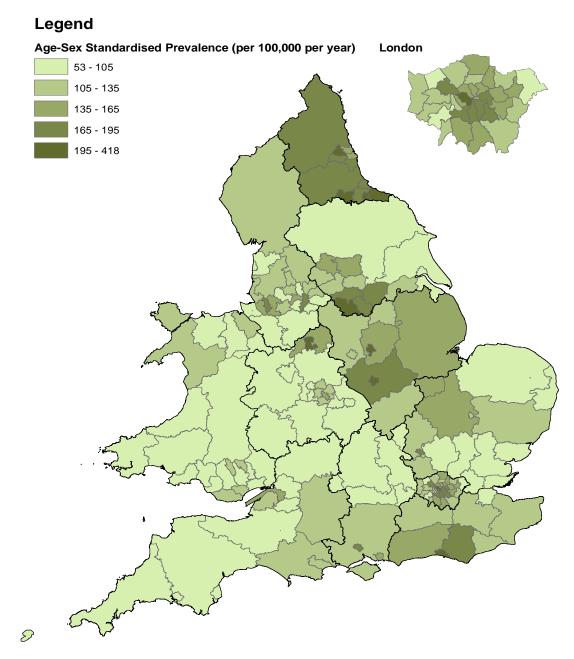



Figure 61c Age-Sex standardised prevalence (per 100,000 per year) for admissions to paediatric intensive care by 2006 PCO in England and Wales, 2004 - 2006

| Table 62 Admi | able 62 Admission of children to AICUs by age and sex, England, 2005 |        |     |          |          |        |     |        |       |        |  |  |  |
|---------------|----------------------------------------------------------------------|--------|-----|----------|----------|--------|-----|--------|-------|--------|--|--|--|
|               |                                                                      |        | A   | ge Group | o (years | 5)     |     |        |       |        |  |  |  |
| Sex           | <                                                                    | 1      | 1-  | 4        | 5-1      | 10     | 11- | ·15    | Total |        |  |  |  |
|               | n                                                                    | %      | n   | %        | n        | %      | n   | %      | n     | %      |  |  |  |
|               |                                                                      |        |     |          |          |        |     |        |       |        |  |  |  |
| Male          | 74                                                                   | (19)   | 103 | (27)     | 66       | (17)   | 138 | (36)   | 381   | (55.9) |  |  |  |
| Female        | 57                                                                   | (19)   | 79  | (26)     | 58       | (19)   | 107 | (36)   | 301   | (44.1) |  |  |  |
| Total         | 131                                                                  | (19.2) | 182 | (26.7)   | 124      | (18.9) | 245 | (18.9) | 682   |        |  |  |  |

Table 62 Admission of children to AICUs by age and sex, England, 2005

|              |               |        | A   | lge Group | o (years) |        |       |        |       |       |
|--------------|---------------|--------|-----|-----------|-----------|--------|-------|--------|-------|-------|
|              | <             | 1      | 1-4 |           | 5-10      |        | 11-15 |        | Total |       |
|              | n             | %      | n   | %         | n         | %      | n     | %      | n     | %     |
| 2005 January | 8             | (13)   | 16  | (25)      | 16        | (25)   | 24    | (38)   | 64    | (9.4  |
| February     | 6             | (23)   | 14  | (23)      | 7         | (23)   | 23    | (23)   | 50    | (7.3  |
| March        | 9             | (21)   | 11  | (26)      | 7         | (16)   | 16    | (37)   | 43    | (6.3  |
| April        | 6             | (16)   | 9   | (24)      | 3         | (8)    | 19    | (51)   | 37    | (5.4  |
| May          | 15            | (22)   | 20  | (29)      | 10        | (15)   | 23    | (34)   | 68    | (10.0 |
| June         | 11            | (19)   | 10  | (17)      | 13        | (22)   | 24    | (41)   | 58    | (8.5  |
| July         | 7             | (16)   | 17  | (39)      | 7         | (16)   | 13    | (30)   | 44    | (6.5  |
| August       | 10            | (19)   | 13  | (24)      | 12        | (22)   | 19    | (35)   | 54    | (7.9  |
| Septemb      | er 10         | (15)   | 17  | (25)      | 13        | (19)   | 27    | (40)   | 67    | (9.8  |
| October      | 9             | (17)   | 19  | (35)      | 15        | (28)   | 11    | (20)   | 54    | (7.9  |
| Novembe      | e <b>r</b> 10 | (16)   | 17  | (27)      | 12        | (19)   | 25    | (39)   | 64    | (9.4  |
| Decembe      | <b>r</b> 30   | (38)   | 19  | (24)      | 9         | (11)   | 21    | (27)   | 79    | (11.6 |
| Fotal        | 131           | (19.2) | 182 | (26.7)    | 124       | (18.2) | 245   | (35.9) | 682   |       |

|                        |     |        | Α   | ge group | o (years | 5)     |     |        |     |        |
|------------------------|-----|--------|-----|----------|----------|--------|-----|--------|-----|--------|
| Diagnostic group       | <   | 1      | 1-  | -4       | 5-       | 10     | 11- | 15     | То  | tal    |
|                        | n   | %      | n   | %        | n        | %      | n   | %      | n   | %      |
| Blood/lymphatic        | 0   | (0)    | 0   | (0)      | 0        | (0)    | 2   | (100)  | 2   | (0.3)  |
| Body wall and cavities | 0   | (23)   | 0   | (23)     | 0        | (23)   | 1   | (23)   | 1   | (0.1)  |
| Cardiovascular         | 14  | (56)   | 1   | (4)      | 3        | (12)   | 7   | (28)   | 25  | (3.7)  |
| Endocrine/metabolic    | 7   | (21)   | 6   | (18)     | 5        | (15)   | 16  | (47)   | 34  | (5.0)  |
| Gastrointestinal       | 4   | (13)   | 3   | (10)     | 4        | (13)   | 20  | (65)   | 31  | (4.5)  |
| Infection              | 9   | (39)   | 6   | (26)     | 2        | (9)    | 6   | (26)   | 23  | (3.4)  |
| Musculoskeletal        | 2   | (9)    | 0   | (0)      | 4        | (17)   | 17  | (74)   | 23  | (3.4)  |
| Neurological           | 35  | (14)   | 89  | (36)     | 53       | (22)   | 69  | (28)   | 246 | (36.1) |
| Oncology               | 4   | (27)   | 3   | (20)     | 2        | (13)   | 6   | (40)   | 15  | (2.2)  |
| Respiratory            | 47  | (27)   | 53  | (30)     | 44       | (25)   | 33  | (19)   | 177 | (26.0) |
| Other                  | 6   | (11)   | 12  | (21)     | 2        | (4)    | 36  | (64)   | 56  | (8.2)  |
| Trauma                 | 3   | (6)    | 9   | (18)     | 5        | (10)   | 32  | (65)   | 49  | (7.2)  |
| Total                  | 131 | (19.2) | 182 | (26.7)   | 124      | (18.2) | 245 | (35.9) | 682 |        |

|                     |   |        | Ag | ge group | o (years | 5)     |   |        |    |        |  |
|---------------------|---|--------|----|----------|----------|--------|---|--------|----|--------|--|
| Diagnostic group    | < | <1     |    | 1-4      |          | 5-10   |   | 11-15  |    | Total  |  |
|                     | n | %      | n  | %        | n        | %      | n | %      | n  | %      |  |
| Cardiac             | 0 | (0)    | 0  | (0)      | 1        | (100)  | 0 | (0)    | 1  | (5.0)  |  |
| Endocrine/Metabolic | 1 | (23)   | 0  | (23)     | 0        | (23)   | 0 | (23)   | 1  | (5.0)  |  |
| Gastrointestinal    | 1 | (100)  | 0  | (0)      | 0        | (0)    | 0 | (0)    | 1  | (5.0)  |  |
| Neurological        | 4 | (36)   | 1  | (9)      | 0        | (0)    | 6 | (55)   | 11 | (55.0) |  |
| Respiratory         | 2 | (40)   | 0  | (0)      | 1        | (20)   | 2 | (40)   | 5  | (25.0) |  |
| Trauma              | 0 | (0)    | 0  | (0)      | 0        | (0)    | 1 | (100)  | 1  | (5.0)  |  |
| Total               | 8 | (40.0) | 1  | (5.0)    | 2        | (10.0) | 9 | (45.0) | 20 |        |  |

| Discharge destination | Tota | Total  |  |  |  |  |
|-----------------------|------|--------|--|--|--|--|
|                       | n    | %      |  |  |  |  |
| Discharged to PICU    | 271  | (39.7) |  |  |  |  |
| Discharged elsewhere  | 391  | (57.3) |  |  |  |  |
| Died                  | 20   | (2.9)  |  |  |  |  |
| Total                 | 682  |        |  |  |  |  |

Table 66 Discharge destination for children admitted to AICUs, England, 2005

Table 67 Length of stay for surviving children admitted to AICUs, England, 2005

| Age group (years) |                |                 |                        |  |  |  |  |
|-------------------|----------------|-----------------|------------------------|--|--|--|--|
| <1 1-4 5-10 11-1  |                |                 |                        |  |  |  |  |
| 1                 | 1              | 1               | 2                      |  |  |  |  |
| 1-4               | 1-5            | 1-6             | ∠<br>1-25              |  |  |  |  |
|                   | <1<br>1<br>1-4 | <1 1-4<br>1 1 1 | <1 1-4 5-10<br>1 1 1 1 |  |  |  |  |

## APPENDIX A PARTICIPATING NHS TRUSTS AND HOSPITAL CHARACTERISTICS

| NHS Trust                                                                    | Participating Hospital                         | Unit / Ward          | Number of ITU beds | Number of<br>HDU beds | Type of unit                                                                  |
|------------------------------------------------------------------------------|------------------------------------------------|----------------------|--------------------|-----------------------|-------------------------------------------------------------------------------|
| Birmingham Children's Hospital NHS Trust                                     | Birmingham Children's<br>Hospital              | PICU                 | 19                 | 0                     | General & Cardiac                                                             |
| Brighton & Sussex University Hospitals NHS<br>Trust                          | Royal Alexandra Hospital for<br>Sick Children  | Lydia Ward           | 1 <sup>a</sup>     | 1                     | General                                                                       |
| Cambridge University Hospitals NHS<br>Foundation Trust                       | Addenbrooke's Hospital                         | PICU                 | 6                  | 2                     | General                                                                       |
| Cardiff & Vale NHS Trust                                                     | University Hospital of Wales                   | PICU                 | 7                  | 0                     | General                                                                       |
| Central Manchester & Manchester<br>Children's University Hospitals NHS Trust | Royal Manchester Children's<br>Hospital        | PICU                 | 15                 | 0                     | General                                                                       |
| Great Ormond Street Hospital for Children                                    | Great Ormond Street Hospital<br>for Children   | CCCU                 | 14-16 <sup>b</sup> | 0                     | Cardiac,                                                                      |
| NHS Trust                                                                    | Great Ormond Street Hospital<br>for Children   | PICU & NICU          | 21                 | 0                     | General & Neonatal Unit                                                       |
| Guy's & St. Thomas' NHS Foundation Trust                                     | Evelina Children's Hospital                    | PICU                 | 15                 | 0                     | General & Cardiac                                                             |
| Hull & East Yorkshire Hospitals NHS Trust                                    | Hull Royal Infirmary                           | PICU beds on<br>AITU | 0                  | 4                     | Adult ICU providing General PICU                                              |
| King's College Hospital NHS Trust                                            | King's College Hospital                        | PICU                 | 6                  | 0                     | General & Hepatic & Neurosurgical                                             |
| Londo Topphing Hoppitals NHC Trust                                           | Leeds General Infirmary                        | Wards 2 & 4          | 16 <sup>c</sup>    | 0                     | General & Cardiac                                                             |
| Leeds Teaching Hospitals NHS Trust                                           | St. James's University<br>Hospital             | PICU                 | 16 <sup>c</sup>    | 0                     | General                                                                       |
|                                                                              | Newcastle General Hospital                     | PICU                 | 10 <sup>d</sup>    | 6 <sup>d</sup>        | General                                                                       |
| Newcastle Upon Tyne Hospitals NHS<br>Foundation Trust                        | Royal Victoria Infirmary                       | Ward 3               | 10 <sup>d</sup>    | 6 <sup>d</sup>        | Surgical ICU                                                                  |
|                                                                              | Freeman Hospital                               | PICU Freeman         | 7 <sup>e</sup>     | 0                     | Cardiothoracic surgery & ECMO                                                 |
| NHS Lothian – University Hospitals Division                                  | Royal Hospital for Sick<br>Children, Edinburgh | PICU                 | 6 <sup>f</sup>     | 6 <sup>f</sup>        | General                                                                       |
| Oxford Radcliffe Hospitals NHS Trust                                         | The John Radcliffe Hospital                    | PICU                 | 7                  | 2                     | General & Cardiac                                                             |
| Nottingham University Hospitals NHS Trust                                    | Queen's Medical Centre                         | PICU                 | 6                  | 4                     | General (plus regional neurosurgical, spinal and cleft lip & palate services) |
| Royal Brompton & Harefield NHS Trust                                         | Royal Brompton Hospital                        | PICU                 | 10                 | 4                     | Cardiac & Respiratory                                                         |

| NHS Trust                                            | Participating Hospital                        | Unit / Ward               | Number of ITU beds | Number of<br>HDU beds | Type of unit           |
|------------------------------------------------------|-----------------------------------------------|---------------------------|--------------------|-----------------------|------------------------|
| Royal Liverpool Children's NHS Trust                 | Royal Liverpool Children's<br>Hospital        | PICU                      | 21                 | 0                     | General & Cardiac      |
|                                                      | Sheffield Children's Hospital                 | PICU                      | 9                  | 2                     | General                |
| Sheffield Children's NHS Foundation Trust            | Sheffield Children's Hospital                 | Neonatal<br>Surgical Unit | 2                  | 0                     | Neonatal Surgical Unit |
| Southampton University Hospitals NHS<br>Trust        | Southampton General<br>Hospital               | PICU                      | 9 <sup>g</sup>     | 0                     | General & Cardiac      |
| South Tees Hospitals NHS Trust                       | James Cook University<br>Hospital             | PICU                      | 4                  | 0                     | General                |
| St. George's Healthcare NHS Trust                    | St. George's Hospital                         | PICU                      | 5                  | 0                     | General                |
| St. Mary's NHS Trust                                 | St. Mary's Hospital                           | PICU                      | 8                  | 2                     | General                |
| The Lewisham Hospital NHS Trust                      | University Hospital, Lewisham                 | PICU                      | 1                  | 2 <sup>h</sup>        | General & Surgery      |
| United Bristol Healthcare NHS Trust                  | Bristol Royal Hospital for<br>Children        | PICU                      | 13                 | 0                     | General & Cardiac      |
|                                                      | Leicester Royal Infirmary                     | CICU                      | 6                  | 2                     | General                |
| University Hospitals of Leicester NHS Trust          | Glenfield Hospital                            | PICU                      | 5                  | 0                     | Cardiac                |
| University Hospital of North Staffordshire NHS Trust | University Hospital of North<br>Staffordshire | PICU                      | 6                  | 1                     | General                |

Notes: a Upon moving to the new Children's hospital in June 2007, the unit will run at 1 ITU bed, 2 medical HDU beds and 2 surgical HDU beds initially The actual figure depends on the number of ECMO patients and HDU patients.

- c Nurses / beds used flexibly across the sites
   d Total bed numbers split between two hospital sites
- May become 8 beds, 2007
  f ITU / HDU beds used flexibly (e.g. 6 ITU + 6 HDU, 9 ITU + 3 HDU, 11 ITU +1 HDU)
  g 3 additional beds may be opening shortly
  h Flexed by a further 2 beds to support winter pressures

## APPENDIX B CLINICAL ADVISORY GROUP MEMBERSHIP

| Name                    | Position                                                                                                  | NHS Trust / Hospital                                                                                                                                                        | Period served  |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| Dr Paul Baines          | Consultant in Paediatric Intensive Care                                                                   | Royal Liverpool Children's NHS Trust                                                                                                                                        | 2002 - present |  |  |
| Ms Corenna Bowers       | Sister                                                                                                    | Alder Hey Hospital<br>Cardiff & Vale NHS Trust                                                                                                                              | 2002 - 2004    |  |  |
| Dr Peter Davis          | Consultant in Paediatric Intensive Care                                                                   | University Hospital of Wales<br>United Bristol Healthcare NHS Trust<br>Bristol Boyol Hospital for Childron                                                                  | 2006 - present |  |  |
| Dr Andrew Durward       | Consultant in Paediatric Intensive Care                                                                   | Bristol Royal Hospital for Children           Consultant in Paediatric Intensive Care         Guy's & St Thomas' NHS Foundation Trust           Evelina Children's Hospital |                |  |  |
| Ms Georgina Gymer       | Research Nurse                                                                                            | Nottingham University Hospitals NHS Trust<br>Queen's Medical Centre                                                                                                         | 2005 - 2006    |  |  |
| Dr James Fraser         | Consultant in Paediatric Intensive Care                                                                   | United Bristol Healthcare NHS Trust<br>Bristol Royal Hospital for Children                                                                                                  | 2002 – 2006    |  |  |
| Dr Hilary Klonin        | Consultant in Paediatric Intensive Care Hull & East Yorkshire Hospitals NHS Trust<br>Hull Royal Infirmary |                                                                                                                                                                             |                |  |  |
| Ms Christine Mackerness | s Sister Newcastle Upon Tyne Hospitals NHS Foundation Trust<br>Newcastle General Hospital                 |                                                                                                                                                                             | 2002 - present |  |  |
| Ms Tina McClelland      | Audit Sister                                                                                              | Royal Liverpool Children's NHS Trust<br>Alder Hey Hospital                                                                                                                  |                |  |  |
| Dr Jillian McFadzean    | Consultant in Paediatric Intensive Care                                                                   |                                                                                                                                                                             |                |  |  |
| Ms Victoria McLaughlin  | Audit Nurse                                                                                               | Central Manchester & Manchester Children's University Hospitals NHS Trust<br>Royal Manchester Children's Hospital                                                           | 2002 - present |  |  |
| Dr Roddy O'Donnell      | Consultant in Paediatric Intensive Care                                                                   | Cambridge University Hospitals NHS Foundation Trust<br>Addenbrooke's Hospital                                                                                               | 2002 - present |  |  |
| Ms Geralyn Oldham       |                                                                                                           |                                                                                                                                                                             | 2002 - present |  |  |
| Dr Gale Pearson (Chair) |                                                                                                           |                                                                                                                                                                             | 2002 - present |  |  |
| Dr Damian Pryor         | Consultant in Paediatric Intensive Care                                                                   | Cardiff & Vale NHS Trust<br>University Hospital of Wales                                                                                                                    | 2002 - 2004    |  |  |
| Dr Allan Wardhaugh      | Consultant in Paediatric Intensive Care                                                                   | Cardiff & Vale NHS Trust<br>University Hospital of Wales                                                                                                                    | 2004 - present |  |  |
| Ms Debbie White         | Sister                                                                                                    | Cambridge University Hospitals NHS Foundation Trust<br>Addenbrooke's Hospital                                                                                               | 2002 - present |  |  |

## APPENDIX C STEERING GROUP MEMBERSHIP

| Name                                      | Position                                                | Organisation                                                                              | Representation                                                                          | Period Served  |
|-------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|
| Mrs Pamela Barnes                         | Chair of Action for Sick<br>Children                    | Action for Sick Children                                                                  | Lay Member                                                                              | 2002 - present |
| Professor Nick Black (Chair)              | Head of Health Services<br>Research Unit                | London School of Hygiene and Tropical<br>Medicine                                         | Health Services Research / Public<br>Health                                             | 2002 - present |
| Mr William Booth                          | Clinical Nurse Manager                                  | United Bristol Healthcare NHS Trust<br>Bristol Royal Hospital for Children PICU           | Royal College of Nursing                                                                | 2002 - present |
| Ms Bev Botting                            | Child Health and Pregnancy<br>Statistics                | Office for National Statistics                                                            | Office for National Statistics (data protection)                                        | 2002 - 2003    |
| Dr Jean Chapple                           | Consultant in Perinatal<br>Epidemiology / Public Health | Westminster Primary Care Trust                                                            | PICNET founder                                                                          | 2002 - 2006    |
| Dr Bill Chaudhry                          | Consultant Paediatrician                                | Newcastle Upon Tyne Hospitals NHS Trust<br>Newcastle General Hospital PICU                | Clinical IT                                                                             | 2002 - 2003    |
| Dr Mark Darowski                          | Consultant Paediatric<br>Anaesthetist                   | Leeds Teaching Hospitals NHS Trust<br>Leeds General Infirmary PICU                        | Royal College of Anaesthetists                                                          | 2002 - present |
| Mr Noel Durkin                            | Department of Health                                    | Child Health Services Directorate                                                         | Department of Health                                                                    | 2002 - present |
| Dr Ian Jenkins                            | Consultant in Paediatric<br>Intensive Care              | United Bristol Healthcare NHS Trust<br>Bristol Royal Hospital for Children PICU           | Paediatric Intensive Care Society                                                       | 2006 - present |
| Dr Steve Kerr                             | Consultant in Paediatric<br>Intensive Care              | Royal Liverpool Children's NHS Trust<br>Alder Hey Hospital PICU                           | Chair of PICS                                                                           | 2003 - present |
| Ms Helen Laing                            | Clinical Audit                                          | Healthcare Commission                                                                     | Healthcare Commission                                                                   | 2004 - 2006    |
| Mr Ian Langfield                          | Audit Co-ordinator                                      | National Assembly of Wales                                                                | National Assembly of Wales                                                              | 2002 - 2003    |
| Dr Michael Marsh                          | Consultant in Paediatric<br>Intensive Care              | Southampton University Hospitals NHS Trust<br>Southampton General Hospital PICU           | Royal College of Paediatrics and Child Health                                           | 2002 - present |
| Dr Jillian McFadzean /<br>Ms Laura Reekie | Consultant in Anaesthesia &<br>Intensive Care / PA      | NHS Lothian – University Hospitals Division<br>Edinburgh Royal Hospital for Sick Children | Edinburgh Royal Hospital for Sick<br>Children                                           | 2005 - present |
| Dr Roddy McFaul                           | Medical Advisor                                         | Child Health Services Directorate                                                         | Department of Health                                                                    | 2002 - 2003    |
| Dr Kevin Morris                           | Consultant in Paediatric<br>Intensive Care              | Birmingham Children's Hospital NHS Trust<br>Birmingham Children's Hospital PICU           | Clinical Lead for the West Midlands<br>Medicines for Children Local Research<br>Network | 2006 - present |
| Professor Jon Nicholl                     | Director of Medical Care<br>Research Unit               | School of Health and Related Research<br>University of Sheffield                          | Health Services Research / Statistics                                                   | 2002 - 2006    |
| Dr Gale Pearson                           | Consultant in Paediatric<br>Intensive Care              | Birmingham Children's Hospital NHS Trust<br>Birmingham Children's Hospital PICU           | Chair of PICANet CAG                                                                    | 2002 - present |
| Ms Tanya Ralph                            | Nursing Research Lead                                   | Sheffield Children's NHS Foundation Trust<br>Sheffield Children's Hospital PICU           | PICS                                                                                    | 2002 - 2006    |

| Name                                                                   | Position                                        | Organisation                                                                    | Representation                                  | Period Served  |
|------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------|----------------|
| Dr Kathy Rowan<br>(on sabbatical 2004 -,<br>represented by Lucy Scott) | Director                                        | ICNARC                                                                          | Intensive Care National Audit & Research Centre | 2002 - present |
| Mr Stuart Rowe                                                         | PCT Commissioner                                | Commissioning Department<br>Hammersmith & Fulham PCT                            | PCT Commissioner (Pan-Thames)                   | 2003 - present |
| Ms Dominique Sammut                                                    | Audit Co-ordinator                              | Health Commission Wales                                                         | Health Commission Wales                         | 2003 - present |
| Dr Jennifer Smith                                                      | Medical Advisor                                 | Office Project Team                                                             | Commission for Health Improvement               | 2002 - 2004    |
| Dr Charles Stack                                                       | Consultant in Paediatric<br>Intensive Care      | Sheffield Children's NHS Foundation Trust<br>Sheffield Children's Hospital PICU | PICS                                            | 2002 - 2006    |
| Professor Stuart Tanner                                                | Medical Advisor in Paediatrics and Child Health | Child Health Services Directorate<br>Department of Health                       | Department of Health                            | 2003 - 2006    |
| Dr Robert Tasker                                                       | Lecturer in Paediatrics                         | Department of Paediatrics<br>University of Cambridge Clinical School            | PICS SG                                         | 2004 - present |
| Dr Edward Wozniak                                                      | Medical Advisor in Paediatrics and Child Health | Child Health Services Directorate<br>Department of Health                       | Department of Health                            | 2006 - present |

## APPENDIX D DATA/INFORMATION REQUESTS RECEIVED TO DATE

| Request<br>date | Name              | Position & Place of work                                                                       | Information requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Status    |
|-----------------|-------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 06/07/2004      | Tom Blyth         | Clinical Research Fellow<br>Department of Paediatric<br>Allergy, St Mary's Hospital,<br>London | ASTHMA STUDY<br>For each month of the study (starting September 2003) the number of children admitted with asthma for each<br>hospital participating in the study, their ages, whether they were ventilated (and if so for how long) and the<br>length of PICU admission. The hospitals involved are –<br>Bristol, Southampton, Guys, Georges, GOS, Brompton, St Mary's, Leicester, Cambridge, Manchester, Alder<br>Hey, Cardiff, Sheffield, Nottingham*, North Staffs*.<br>(* - final approval to recruit not yet obtained).<br>I would also be interested in knowing a list of all PICUs on PICANet so I can see if I could approach any other<br>units.                                                                                                                                                                                                                                               | Completed |
| 24/09/2004      | Mark Darowski     | Clinical Director,<br>Leeds Teaching Hospitals<br>Trust                                        | LEEDS SMRs         1. SMR for each of the 3 elements of our service (as up-to-date as possible).         2. If the data suggest that SJUH PICU has a high SMR, please can I have an SMR (with CI) for oncology patients admitted to SJUH as compared to a national aggregate score for oncology patients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Completed |
| 04/10/2004      | Charles Stack     | Director ICU,<br>Sheffield Children's Hospital                                                 | PREVALENCE RATES OF ADMISSION<br>Prevalence rate of admissions per 1000 children per year in PICANet recording area for the last full year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Completed |
| 06/10/2004      | Simon Nadel & DoH | Consultant in Paediatric<br>Intensive Care,<br>St Mary's Hospital London                       | <b>RSY STUDY</b><br>Number of children admitted to UK PICUs with a diagnosis of acute viral bronchiolitis, and/or (if possible) a diagnosis of RSV infection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Completed |
| 18/11/2004      | Andrew<br>Magnay  | Consultant in Paediatric<br>Intensive Care,<br>University of North<br>Staffordshire NHS Trust  | <ul> <li>NORTH STAFFS ADMISSIONS Quarterly or 4 monthly report by fiscal year time frames of the following population data, specifically, patients admitted to PICU, University Hospital of North Staffordshire: <ol> <li>Number of Admissions by PCT during report time window.</li> <li>a. Number of episodes which completed (=discharge or death) during the report time window by PCT, and b. Number of days of PICU care associated with these discharges/ deaths by PCT; <li>Number of admissions by Health authority;</li> <li>a. Number of episodes which completed (=discharge or death) during the report time window by Health authority; <li>a. Number of episodes which completed (=discharge or death) during the report time window by Health Authority and b. Number of days of PICU care associated with these discharges / deaths by Health Authority </li> </li></li></ol></li></ul> | Completed |
| 30/11/2004      | Ulf Theilen       | Locum Consultant, Royal<br>Hospital for Sick Children,<br>Edinburgh                            | <ul> <li>PERTUSSIS</li> <li>Number of admissions to PICUs in 2003 and 2004 with diagnosis pertussis</li> <li>Number of deaths of these children</li> <li>Of these children, age at time of death</li> <li>Use of inotropes (yes/no)</li> <li>Level of max. mean airway pressure (if available)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Completed |

| 07/12/2004 | Mark Campbell | SHO, Anaesthetics,<br>Derriford Hospital, Plymouth                                                                 | TEENAGERS IN PICU<br>Epidemiology of critical care in teenagers:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rejected                                                                                                                                                                                                                                                                      |
|------------|---------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |               |                                                                                                                    | <ul> <li>A) % and numbers of admissions of 13 to 19 year olds (inclusive)</li> <li>B) diagnostic case-mix by broad category</li> <li>C) male: female ratio</li> <li>D) length of stay and invasive or non-invasive ventilation (mean, median and IQR please)</li> <li>E) outcome</li> <li>F) Could we have the same figures for those admitted from another hospital or from an intensive care unit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |
| 23/12/2004 | Rosa Jones    | Specialised Services<br>Commissioning Manager,<br>Specialised Services<br>Commissioning Team,<br>Cheshire West PCT | <b>NORTH WEST RSV</b><br>Number and length of stay in days of children with bronchiolitis, RSV-positive bronchiolitis and RSV-negative infection in children admitted to Royal Liverpool Children's Hospital and Royal Manchester Children's Hospital for the period of March 2003 and February 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Completed                                                                                                                                                                                                                                                                     |
| 10/01/2005 | Peter Davis   | Consultant Paediatric<br>Intensivist, Bristol Royal<br>Hospital for Children                                       | BURNS STUDY         All children admitted to PICUs in UK with burns.         Breakdown of numbers per unit, with identification of units if possible         First portion of postcode to identify geographical location of home address of all PICU burn admissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Completed (without unit identification)                                                                                                                                                                                                                                       |
| 27/01/2005 | Andrew Gill   | Senior Casemix Consultant<br>NHS Information Authority                                                             | <b>NHSIA STUDY</b><br>Full PICANet dataset requested to develop robust Healthcare Resource Groups for Paediatric Critical Care.<br>This work has been commissioned by the Department of Health to support the Payment by Results initiative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PICANet has written a software<br>utility to enable PICUs to<br>provide data from local<br>PICANet databases for the<br>HRG study. PICANet continues<br>to provide support to the PCC<br>Expert Working Group in the<br>development of HRGs for<br>paediatric intensive care. |
| 19/04/2005 | Sophie Lusby  | Project Manager - Children's<br>Services<br>Barts and the London NHS<br>Trust                                      | <ul> <li>NORTH EAST LONDON REQUEST For North East London residents ONLY, for 2003/4 and 2004/5 as far as possible and all queries split by period: <ul> <li>How many children treated in PIC?</li> <li>Numbers/percentages by sex</li> <li>Numbers/percentages by age, splitting the ages into under 28 days, under 1 year, under 2 years, and above</li> <li>What were the diagnoses of these children on admission? (numbers/percentages of different diagnoses)</li> <li>And of these please specify single/multi system failure (numbers/percentages of either)</li> <li>Length of stay, in hours</li> <li>Length of intubation, in hours (if not intubated please specify also)</li> <li>Name of treating PIC (numbers and percentages)</li> </ul> </li> <li>LESS IMPORTANTLY BUT STILL REQUISITE: <ul> <li>Numbers by age, as above, but also 2-5 yrs, 5-10, 10 and above</li> <li>Retrieval/Transfer – type</li> </ul> </li> </ul> | Completed                                                                                                                                                                                                                                                                     |

|            |             |                                                                           | <ul> <li>Other reasons for admission</li> <li>Co-morbidities</li> <li>Discharge destination</li> <li>Diagnosis on discharge</li> <li>Any information on readmission</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|------------|-------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 29/05/2005 | Simon Nadel | Consultant in Paediatric<br>Intensive Care, St Mary's<br>Hospital, London | SEPSIS STUDY         The numbers of children admitted to PICUs with a primary or secondary diagnosis of sepsis.         Is this community or nosocomially acquired?         What is the proportion of underlying co-morbidity?         What is the age spread?         Do you have information about aetiology (i.e. infecting organisms)?         How many children with "other" diagnoses (i.e. respiratory / neurological) have a primary infectious cause of PICU admission?         What is the outcome?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pending   |
| 3/06/2005  | Stuart Rowe | Lead Commissioner - Pan<br>Thames, Hammersmith and<br>Fulham PCT          | <ul> <li>PAN THAMES COMMISSIONERS' REQUEST</li> <li>All data will relate to residents with a postcode in the Pan Thames region and will cover the periods 2003/4 (April – March) and 2004/5 (April – March).</li> <li>DATA BY YEAR AND BY SHA <ul> <li>PICU admissions by gender</li> <li>PICU admissions by gender</li> <li>PICU admissions by age:</li> <li>Age groups: s28 days, 29 days to &lt;1 year, 1 to &lt;2 years, 2 to &lt;5 years, 5 to &lt;10 years, 10 years plus.</li> <li>PICU admissions by indenoision.</li> <li>Diagnostic groups: Accidents &amp; poisoning, Blood/lymphatic, Cardiovascular, Congenital, Endocrine/metabolic, Gastrointestinal, Infection, Musculoskeletal, Neurological, Oncology, Perinatal, Respiratory, Trauma, Urological, Other.</li> <li>PICU admissions by intervention received:</li> <li>Invasive ventilation, Non-invasive ventilation, ECMO, IV vasoactive drug therapy, LVAD, ICP device, Renal support.</li> <li>PICU admissions by length of stay</li> <li>In hours: &lt;1, 1 to &lt;4, 4 to &lt;12, 12 to &lt;24, 24 plus.</li> <li>PICU admissions by days of invasive ventilation</li> <li>In days: &lt;1, 1 to &lt;3, 3 to &lt;7, 7 to &lt;14, 14 to &lt;28, 28 plus.</li> <li>PICU admissions by unit discharge status</li> <li>Status: Alive or dead.</li> <li>PICU admissions by unit discharge destination</li> <li>Destination groups: Home, Same hospital, Other hospital.</li> <li>Number of retrievals by team type</li> <li>Team type: Own team, Other specialist team (PICU), Other specialist team (non-PICU), Non-specialist team.</li> <li>The above can all be done by month for an aggregated Pan Thames dataset.</li> <li>UNIT LEVEL DATA BY YEAR AND BY PCT</li> <li>PICU admissions by treating unit ("anonymised until agreement received).</li> <li>"Responsibility of Pan Thames to gain agreement from lead clinician.</li> <li>The above can all be done by month for an aggregated Pan Thames dataset.</li> </ul> </li> </ul> | Completed |

| 13/06/2005 | Stuart Rowe      | Lead Commissioner - Pan<br>Thames,<br>Hammersmith and Fulham<br>PCT | SUPPLEMENTARY REQUEST:         All data will relate to residents with a postcode in the Pan Thames region and will cover the periods 2003/4         (April – March) and 2004/5 (April – March).         DATA BY YEAR AND BY SHA         • Number of retrievals by primary diagnostic group         Diagnostic groups: Accidents & poisoning, Blood/lymphatic, Cardiovascular, Congenital,         Endocrine/metabolic, Gastrointestinal, Infection, Musculoskeletal, Neurological, Oncology, Perinatal,         Respiratory, Trauma, Urological, Other         ? More details for neurological         • LTV patients         ? Define LTV         ? Data         • ?Ethnicity / Mortality / Illness severity                                                                  | Completed |
|------------|------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 21/06/2005 | Noel Durkin      | Child Health Services<br>Directorate, Department of<br>Health       | <ul> <li>CASELOAD PRESSURES</li> <li>Department of Health provided their draft 'National Paediatric Intensive Care Capacity Stocktake' proforma and requested PICANet completed the data fields where possible. (Data was requested for 2001 - 2005).</li> <li>1. Current bed numbers by unit (separated by High Dependency and Intensive Care).</li> <li>2. Number of these beds which are currently fully staffed and at what WTE per bed.</li> <li>3. Information on current workload by unit (including number of patients admitted and their average length of stay.</li> <li>4. Any information on refusals.</li> <li>5. Number of retrievals by unit.</li> <li>6. Average bed occupancy by unit and further separated by High Dependency and Intensive Care.</li> </ul> | Completed |
| 29/07/2005 | Duncan<br>Macrae | PICU Director, Royal<br>Brompton Hospital                           | GLYCAEMIA CONTROL INTERVENTION TRIAL         • Numbers of admissions of children invasively ventilated         • Numbers given inotropes         • Whether they received cardiac surgery or not         • Length of stay         • Mortality at discharge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Completed |
| 03/08/2005 | Kevin Morris     | Consultant in PICU,<br>Birmingham Children's<br>Hospital            | WEST MIDLANDS BURNS<br>Numbers, severity (%), length of stay, mortality (and time to death).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Completed |
| 16/08/2005 | Kevin Morris     | Consultant in PICU,<br>Birmingham Children's<br>Hospital            | <b>NEURO MONITORING</b><br>Information about children admitted to PICU with a diagnosis of meningitis or encephalitis and the use of neuro-<br>monitoring in these patients e.g. ICP monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Completed |
| 22/08/2005 | lain MacIntosh   | Consultant in PICU,<br>Southampton General<br>Hospital              | SOUTHAMPTON RESPIRATORY<br>Number of patients admitted with a respiratory diagnosis.<br>This information divided into bronchiolitis / asthma / pneumonia.<br>We need to then divide the patients into those over one year old and those under one year old                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Completed |

| David         | Registrar, John Radcliffe                                                     | OXFORD NIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cremonesini   | Hospital, Oxford                                                              | All children admitted to the PICU in Oxford who have received non-invasive ventilation: <ul> <li>Admission number</li> <li>Casenote number</li> <li>Name</li> <li>DOB</li> <li>Admission date</li> <li>Discharge status</li> <li>Discharge date</li> <li>Non-invasive ventilation</li> <li>Number of days of non-invasive ventilation</li> <li>Invasive ventilation</li> <li>Number of days of invasive ventilation (if applicable)</li> <li>Tracheostomy</li> <li>Primary diagnosis</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sophie Lusby  | Project Manager - Children's<br>Services<br>Barts and the London NHS<br>Trust | SUPPLEMENTARY REQUEST         Supplementary data to that in the report recently provided.         • Split LOS into <24 hrs, 24 to <48 hrs, 48 hrs plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Zoey Taylor   | Audit Clerk, University<br>Hospital of Wales                                  | CARDIFF MENINGITIS<br>Number of patients admitted to Cardiff's PICU with a diagnosis of meningococcal disease (by month / age /<br>admission source).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Peter Davis   | Consultant Paediatric<br>Intensivist, Bristol Royal<br>Hospital for Children  | BRISTOL CPR<br>Numbers of both in-hospital and out-of hospital arrests for 2003-4 admitted to PICU, their ages, admission<br>diagnosis and their ultimate outcome (survival / non-survival). Also their pupillary reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mark Darowski | Clinical Director, Leeds<br>Teaching Hospitals Trust                          | LEEDS BED PLANNING STUDY         Data request from SOAPS for PICU data         1. Commissioned beds per head of population under age 16 by geographical area. Within this, we need to make an allowance for the cardiac work that comes into Leeds from North Trent.         2. Patient flows.         a. For each PCT within our area, identify all patients requiring PIC care and the units in which they received it.         b. For all patients admitted to Leeds/Hull PICU, identify source PCT.         3. Beds days. Total beds occupied per annum and on each day, aggregated by PCT and by commissioning area.         a. Excluding long term ventilated patients (at various levels), therefore excluding patients who have been ventilated for <ul> <li>i. &gt; 3/12</li> <li>ii. &gt; 6/12</li> <li>iii. &gt; 9/12</li> <li>b. Excluding high dependency patients (those who have never been ventilated during their PICU stay)</li> </ul> - Calculate funded beds per 100,000 population.         - Calculate funded beds per 100,000 population, weighted for socio-economic deprivation. | Completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | Cremonesini<br>Sophie Lusby<br>Zoey Taylor<br>Peter Davis                     | CremonesiniHospital, OxfordSophie LusbyProject Manager - Children's<br>Services<br>Barts and the London NHS<br>TrustZoey TaylorAudit Clerk, University<br>Hospital of WalesPeter DavisConsultant Paediatric<br>Intensivist, Bristol Royal<br>Hospital for ChildrenMark DarowskiClinical Director, Leeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cremonesini       Hospital, Oxford       All children admitted to the PICU in Oxford who have received non-invasive ventilation:         Admission number       Casencie number         Name       DOB         Admission date       Discharge status         DoB       Admission date         Discharge status       Discharge status         Discharge status       Non-invasive ventilation         Number of days of non-invasive ventilation       Invasive ventilation         Number of days of non-invasive ventilation       Invasive ventilation         Number of days of non-invasive ventilation       Invasive ventilation         Services       Barts and the London NHS       Supplementary data to that in the report recently provided.         Zeey Taylor       Audit Clerk. University       CARDIFF MENINGITIS         Number of patients admitted to Cardiff's PICU with a diagnosis of meningococcal disease (by month / age / admission source).         Peter Davis       Consultant Paediatric Intensivel, Bristol Royal         Hospital for Children       Burbers of both in-hospital and out-of hospital arrests for 2003-4 admitted to PICU, their ages, admission diagnosis and their ultimate outcome (survival / non-survival). Also their pupillary reaction.         Mark Darowski       Cinical Director, Leeds       EEED S BED FLANING STUDY         Calculate function in-hospital and out-of hospital arrests for 2003-4 admitted to PICU, |

|            |                                   |                                                                                              | <ul> <li>excluding LTV patients (at each level) and HD patients.</li> <li>Calculate on how many days predicted bed requirements are not sufficient to meet demand at each level, and how many patients would have failed to be admitted.</li> <li>Plot number of children on PICU by day against max number of commissioned beds, nationally and for each commissioning region. Plan services</li> </ul> |                                                      |
|------------|-----------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 01/12/2005 | Tim Martland                      | Consultant Paediatric<br>Neurologist, Royal<br>Manchester Children's<br>Hospital             | <b>STATUS EPILEPTICUS STUDY</b><br>PICANet data for children admitted with Status epilepticus (please specify:)<br>Treatment used for status epilepticus (possibly use custom fields section of database).                                                                                                                                                                                               | Rejected                                             |
| 06/12/2005 | Corinne<br>Camilleri-<br>Ferrante | Consultant in Public Health<br>Medicine, TrentCOM                                            | TRENT BED OCCUPANCY         More information on the bed days in Nottingham (QMC), Sheffield and Leicester, particularly the split in Sheffield between PIC and neonatal surgery beds.         The data as they currently appear do not seem logical and I understand that might be the problem.                                                                                                          | Completed                                            |
| 08/12/2005 | Parviz Habibi                     | Consultant, St Mary's<br>Hospital                                                            | BRONCHIOLITIS - MORTALITY<br>Annual death rate from bronchiolitis 2004                                                                                                                                                                                                                                                                                                                                   | Completed                                            |
| 08/12/2005 | Nadeem<br>Moghal                  | Consultant Paediatric<br>Intensive Care, Nephrology,<br>RVI Newcastle                        | <b>RENAL FAILURE</b><br>Epidemiology of acute renal failure in PICU setting, nationally – CVVH, HD, PD etc                                                                                                                                                                                                                                                                                               | Completed                                            |
| 12/01/2006 | Nour Hassan                       | Clinical Fellow, Newcastle<br>General Hospital                                               | NGH RVI ONCOLOGY<br>The following information on oncology admissions to NGH and the RVI:<br>• Non-invasive ventilation: Yes/No<br>(if yes, number of days)<br>• Invasive ventilation: Yes/No<br>(if yes, number of days)<br>• Inotropes: Yes/No                                                                                                                                                          | Completed                                            |
| 16/01/2006 | Sian Thomas                       | Project Manager, Welsh<br>Assemby Government                                                 | WELSH TBIAdmissions to PICU (outside Cardiff) with a Welsh postcode, aged under 16 years with a primary diagnosis of<br>traumatic brain injury.Time period: June 2003 – May 2005                                                                                                                                                                                                                         | Completed                                            |
| 01/03/2006 | James Fraser                      | Consultant in Paediatric<br>Intensive Care, Bristol<br>Children's Hospital                   | PICU ACTIVITY<br>The number of admissions and number of bed days by PCT<br>(a) for Bristol admissions and<br>(b) for all PICU admissions                                                                                                                                                                                                                                                                 | Completed                                            |
| 02/03/2006 | Anna Seale                        | SpR Paediatric Cardiology<br>Royal Brompton Hospital                                         | Admissions with TAPVC / congeniatal pulmonary vein stenosis.                                                                                                                                                                                                                                                                                                                                             | Completed (information returned to individual PICUs) |
| 05/06/2006 | Cornelia<br>Junghans              | Epidemiologist & Research<br>Fellow, Prognostic<br>Epidemiology Group, UCL<br>Medical School | NEL PATIENTS STUDY         For all patients in the NEL sector:         Not currently in the manual but discussed with Roger Parslow:         1. Individual Townsend score         2. Ethnicity obtained by name programme         3. Age in months         4. Survival in months         5. Primary diagnosis by diagnostic group                                                                        | Completed                                            |

| Dat | a directly from the database: |  |
|-----|-------------------------------|--|
| 1.  | ADDATE                        |  |
| 2.  | ADTIME                        |  |
|     | SEX                           |  |
| 5.  | ADTYPE                        |  |
|     |                               |  |
|     | GEST                          |  |
|     | MULT                          |  |
| 7.  | SOURCEAD                      |  |
| 8.  | PREVICUAD                     |  |
|     | CAREAREAAD                    |  |
|     | RETRIEVAL                     |  |
|     |                               |  |
|     | RETRIEVALBY                   |  |
|     | OTHDIAGNOTES                  |  |
|     | OTHDIAG                       |  |
| 14. | OPPROCNOTES                   |  |
| 15  | OPPROC                        |  |
|     | COMNOTES                      |  |
|     | COMDIAG                       |  |
|     |                               |  |
|     | PRECEDCPR                     |  |
|     | PRECEHOSPCARDARR              |  |
| 20. | CARDIOMYOCARDITIS             |  |
|     | CARDIACBYP                    |  |
|     | SEVCOMBIMMUNE                 |  |
|     | SPONTCEREBHAEM                |  |
| 23. |                               |  |
|     | HIV                           |  |
| 25. | LIVERFAIL                     |  |
| 26. | LEUKLYMPH1ST                  |  |
| 27. | NEUROGENDIS                   |  |
|     | HYPOPLAS                      |  |
|     | ELECTIVEAD                    |  |
|     | PRIMREASON                    |  |
|     |                               |  |
|     | INTUBATION                    |  |
|     | HEADBOX                       |  |
| 33. | MECHVENT                      |  |
|     | CPAPFIRSTHR                   |  |
|     | INVVENT                       |  |
|     | INVVENTDAY                    |  |
|     |                               |  |
|     | NONINVVENT                    |  |
|     | NONINVVENTDAY                 |  |
| 39. | INTTRACHEOSTOMY               |  |
| 40. | VASOACTIVE                    |  |
|     | LVAD                          |  |
| 40  | ICPVD                         |  |
|     |                               |  |
|     |                               |  |
|     | RENALSUPPORT                  |  |
| 45. | RENALHAEMFIL                  |  |
| 46. | RENALHAEMDIA                  |  |
|     | RENALPLASFILT                 |  |
|     | RENALPLASEXCH                 |  |
|     | RENALPERIDIA                  |  |
| 49. |                               |  |

| 07/06/2006 | James McLean        | Matron, Leicester PICU<br>Services                                           | 50. UNITDISSTATUS<br>51. DISPALCARE<br>52. UNITDISDATE<br>53. UNITDISTIME<br>54. UNITDISDEST<br>55. UNITDISDESTHOSP<br>56. COMMENTS<br>CICU ADMISSIONS<br>All admissions to LRI CICU, with breakdown of level of dependency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rejected  |
|------------|---------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 08/06/2006 | Samy<br>Subramaniam | Deputy Manager,<br>Department of Health,<br>Wellington House                 | COSTINGS<br>Costs / episodes information relating to Paediatric Intensive care. It will be helpful, if you would provide a child's care episodes, relevant costs and other information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rejected  |
| 26/06/2006 | Jonathan<br>Round   | Consultant, St George's<br>Hospital PICU, Tooting                            | <b>ONCOLOGY STUDY</b><br>Raw data on all patients admitted to PICU's in the UK with oncology coding. Data required on: age, sex, oncology diagnosis, and where in treatment (may not be in picanet dataset), if had bone marrow transplant, other diagnoses, PIM data at admission, if ever ventilated (invasive or non-invasive) or received inotropes, outcome, LOS and status at 30 days. I also need source of admission, planned/unplanned and post surgery.                                                                                                                                                                                                                                                                                                                          | Completed |
| 27/06/2006 | Peter Davis         | Consultant Paediatric<br>Intensivist, Bristol Royal<br>Hospital for Children | SOUTHWEST AUDIT OF CRITICALLY ILL CHILDREN<br>All children admitted from April 2003 – March 2006 with a postcode starting with one of the following (BA, BS,<br>EX, GL, PL, SN, TA, TQ, TR) to a unit other than Bristol Royal Hospital for Children.<br>Information required:<br>PICU (NHS Trust) admitted (code);<br>First 3-4 characters of postcode (e.g. BS16);<br>Date of admission;<br>Age;<br>Elective or non-elective admission;<br>Retrieval type (if appropriate);<br>Primary diagnosis (+ read code);<br>Length of stay;<br>Discharge outcome                                                                                                                                                                                                                                  | Completed |
| 11/07/2006 | Tina<br>McClelland  | Audit Nurse, PICU, Alder<br>Hey, Liverpool                                   | <ul> <li>SMR STUDY</li> <li>SMR STUDY</li> <li>The SMR for Alder Hey is high. Would like to investigate possible reasons for this.</li> <li>Require: <ol> <li>Total deaths, ventilation rate, mortality rate and PIM predicted SMR by year (2003, 2004, 2005)</li> <li>Exclude patients who were dead on admission</li> <li>Look at whether the SMRs might be related to missing PIM data: reanalyze SMR (across the years 2003/04/05) in three groups 1) all patients 2) those where one or more of the PIM physiological variables are missing (PaO2 Bxs, systolic BP) 3) those where all the PIM physiological variables are missing (PaO2 Bxs, systolic BP)</li> <li>Also start to look at whether the SMRs might be related to the case-mix seen at Alder Hey.</li> </ol> </li> </ul> | Completed |
| 30/07/2006 | David Pedley        | Consultant in Emergency<br>Medicine, James Cook<br>University Hospital       | LEVEL OF CARE         I need information on the level of care in each PICU in England and Wales. In particular I need to establish which units are staffed by full time intensivists and the access to neurosurgical advise / expertise.         I was hoping to use levels of care defined by Rosenberg et als in the following paper.         Rosenberg etal (Guidelines and levels of care for pediatric intensive care units) Crit Care Med 2004 vol.32 no10.         If this is not the classification used by your database is there a UK equivalent and could you supply these                                                                                                                                                                                                      | Rejected  |

|            |                                       |                                                                                                                                    | criteria?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 01/08/2006 | Heather<br>Titcombe                   | Specialist Commissioner for<br>Children's Tertiary Services,<br>Jubilee House,South Central<br>SHA,Oxford (host South<br>West SHA) | SOUTH WEST         I would like the following :         1. The total number of bed days and the percentage paediatric specialty split, for the following hospitals, using the DH Clinical Terminology Coding System :         -       United Bristol Hospital Trust         -       Bristol Royal Infirmary         -       Oxford Radcliffe         -       Southampton General         2. How many children are refused admission to the hospitals outlined above, what is the reason for the refusal and if possible where did the child then end up?                                                                                                                                                                                                  | Completed |
| 17/08/2006 | Noel Durkin                           | Department of Health                                                                                                               | CARDIAC<br>Essentially we are looking for the following data<br>- activity by cardiac procedure code<br>- broken down by new PCT (if possible) but more importantly by known paediatric cardiac centre<br>- broken down also by age groups<br>(Neonates [1-30 days], infants [31 -365 days], children [1 -16], adult [16+])<br>- in a form which will enable us to look at patient flows to known centres, including for specific conditions<br>- most recent data available 2004 and 2005 (and 2006 if available).                                                                                                                                                                                                                                       | Completed |
| 19/09/2006 | Richard<br>Appleton & Tim<br>Martland |                                                                                                                                    | <b>REFRACTORY CONVULSIVE STATUS EPILEPTICUS</b><br>PICANet data to 'flag-up' all children admitted with a diagnosis of 'seizure', 'fit', convulsion or 'status epilepticus' to the PICU. This will use the current field on the standard PICANet data collection sheet. From this population, only data on those children who are still convulsing and who require antiepileptic treatment on admission or within 24 hours of admission to PICU will subsequently be collected. All data will be anonymous. It is hoped that these data will be collected by a medical or nursing member of each participating PICU - using a proforma that will have been devised by RA and TM. This will (hopefully) ensure that ethical approval will not be required. | Pending   |
| 03/10/2006 | Charles Stack/<br>Jo Knutton          | ICU Director/Audit Nurse,<br>PICU, Sheffield Children's<br>Hospital                                                                | SHEFFIELD OCCUPANCY/IV<br>Total number of calendar days that patients received invasive ventilation on our unit between 01.01.05<br>(including those already occupying a bed) and the 31.012.05 (inclusive)<br>AND<br>The total number of calendar days that patients were occupying beds, again from 01.01.05 until 31.12.05<br>inclusive.<br>i.e. a way of calculating the number of days each patient was admitted to give a grand overall number of days,<br>hence if a patient was discharged and another one admitted in to that bed it would count as 2 separate days.                                                                                                                                                                             | Completed |
| 05/10/2006 | David<br>Cremonesini                  | Respiratory Paeds SpR,<br>John Radcliffe Hospital,<br>Oxford                                                                       | EMPYEMA<br>Incidence of empyema in children admitted to PICU in UK over the past years since PICANet started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pending   |
| 09/10/2006 | Reinout<br>Mildner                    | Consultant Paediatric<br>Intensivist, Birmingham<br>Children's Hospital                                                            | BIRMINGHAM DATA<br>For as many years as you have data available:<br>1. Bed days at BCH for children with WM postcode<br>2. Interventions at BCH children with WM postcode<br>3. PIM data at BCH children with a WM postcode<br>Then again but for any PICU<br>4. Bed days at any PICU for children with WM postcode<br>5. Interventions at any PICU children with WM postcode                                                                                                                                                                                                                                                                                                                                                                             | Completed |

|            |                                     |                                                                                                    | 6. PIM data at any PICU children with a WM postcode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|------------|-------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 09/10/2006 | Reinout<br>Mildner                  |                                                                                                    | WEST MIDLANDS PATIENTS ADMISSIONS OUTSIDE WM<br>For as many years as you have available:<br>Any acute admissions to any UK PICU outside the West Midlands region of patients with a West Midlands<br>postcode.<br>We require number of admissions with date and time of admission. If it is possible to provide primary diagnosis<br>and referring hospital in the West Midlands this would help.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Completed |
| 09/11/2006 | Robert Tasker<br>& Mike<br>Sharland | Consultant PICU,<br>Addenbrooke's & Consultant<br>in Paediatric Infectious<br>Disease, St George's | BACTERAEMIA<br>Admission information<br>PIM data<br>Interventions<br>Discharge information<br>Ethnic category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pending   |
| 22/11/2006 | David Inwald                        | Consultant in PICU                                                                                 | ST MARY'S ADMISSIONS         Admissions         1. Total Admissions (November 05- November 06)         2. Totl intubated         3. Percentage with an endothracheal tube receiving ventilation         4. for up to 6 hours         5. more than 6 hours up to 12 hours         6. More than 12 hours         7. Total retrieved         8. Total presenting from A&E         9. Total post-surgery by specialiy         10. Total numbers according to types of medical conditions         11. Breakdown of patient numbers according to age         a. Preterm - please give numbers and specific gestational ages         b. Birth to 30 days         c. 31 days to one year         d. > 1 year to 2 years         e. > 1 years to 15 years         i. > 10 years to 15 years         i. > 10 years to 18 years         j. > 18 years         12. Mean length of PICU admission (nights)         13. Median length of PICU admission (nights)         13. Median length of PICU admission (nights)         14. Mortality (total number)         15. Mortality (percentage of total admissions) | Completed |
| 30/11/2006 | Melanie<br>Maxwell                  | Consultant in Public Health<br>Medicine, Wirral NHS Trust                                          | NORTH WEST DATA<br>All data requested relate to 2003-2005, annual data for each of the two units (Royal Manchester Children's<br>Hospital and Royal Liverpool Children's Hospital ) and the UK average if possible:<br>The median age with the interquartile ranges<br>The data are very skewed and there are concerns that changing patterns are being obscured.<br>The total bed days by month<br>There are concerns expressed that admission numbers alone do not reflect how busy the units are and we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Completed |

|            |                 |                                                                                | need to explore fluctuations over time in occupancy.<br>PIMs score - numbers in score group by age group<br>numbers in score group by admission type<br>numbers in score group by discharge status<br>There appears to be a significant difference to this between the two units that we would like to explore further.<br>LOS data - mean, median and ranges by age group and admission type<br>We have the mean for 2005 and in planning terms it is useful to have this information. However, we recognise<br>that the data are very skewed by Long Term Ventilator patients. We also need to explore the impact of the<br>changing casemix of the units.<br>Discharge status by admission type<br>To further explore the changes in crude death rate over time<br>Diagnostic group by admission type<br>To further explore the differences in casemix between the two units<br>For 2003-2005, annually can you state:<br>How many North West residents were admitted to a unit outside the North West?<br>Numbers<br>Total bed days<br>Admissions by Diagnostic groups<br>Admissions by Tegion (or unit)<br>How many non North - West residents were admitted to one of the North West Units?<br>Numbers<br>Total bed days<br>Admissions by region (or unit)<br>These data will provide some information about flows of patients in and out of the Region and will help to<br>identify some unmet need.<br>We also wish to explore whether children with spinal muscular atrophy using PIC services are increasing.<br>Would it be possible for you to search on this diagnosis to examine national trends (as far back as possible) as<br>well as our two local services? The data would be:<br>Numbers of radmissions by year<br>Total bed days by year<br>Total bed days by year<br>Discharge estatus<br>Numbers of readmissions by year<br>Total bed days by year<br>Discharge tatus<br>Numbers of readmissions is year<br>Discharge estatus<br>Numbers of readmissions is year<br>Discharge estatus<br>Numbers of readmissions is year<br>Discharge status |           |
|------------|-----------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|            |                 |                                                                                | Numbers of readmissions (using 2003 as the base population, how many times have people been readmitted in the next 2 years i.e. a 2*2 table number of readmissions within 2 years (1,2,3 etc) by number of patients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 16/04/2007 | Michelle Milner | Network Manager / Lead<br>Nurse Paediatric Critical<br>Care Network, Leeds PCT | OUT OF REGION TRANSFERS<br>Ideally, I require information on all out of region transfers by PCT to Leeds and Sheffield by date, time of<br>transfer, and type of transfer.<br>However, this will not be possible as it has the potential to identify individual patients. Therefore my adjusted<br>request is as follows:-<br>Please supply me with information on transfers from within the Yorkshire and the Humber region, grouped into<br>Sheffield patients and Leeds patients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Completed |

|            |                           |                                                                                                                               | <ul> <li>Sheffield patients being the following PCT's:- Barnsley, Sheffield West, North Sheffield, Sheffield South West, South East Sheffield, Rotherham, Doncaster West, Doncaster Central, Doncaster East, North Lincolnshire, North East Lincolnshire</li> <li>Leeds patients from the following PCT's:- Hambleton and Richmondshire, Craven Harrogate and Rural District, Scarborough Whitby and Ryedale, Selby and York, Yorkshire Wolds and Coast, East Yorkshire, Western Hull Teaching, Eastern Hull Teaching, Airedale, Bradford South and West, North Bradford, Bradford City Teaching, Calderdale, Leeds North West, Leeds West, Leeds North East, East Leeds, South Leeds, Huddersfield Central, South Huddersfield, North Kirklees, Wakefield West, Eastern Wakefield).</li> <li>Please supply this information by date of transfer, time of transfer, care area, retrieval (Y or N) retrieved by (own team other specialist team etc), and admitting PICU.</li> <li>Please note:- I already have the information on children transferred from Leeds PICU to Sheffield PICU and Sheffield PICU to Leeds (Supplied by the individual PICU's) therefore please exclude these patients from the information supplied.</li> </ul> |           |
|------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 16/04/2007 | Padmanabhan<br>Ramnarayan | Consultant in Paediatric<br>Intensive Care & Retrieval,<br>PICS Informatics Special<br>Interest Group and Study<br>Group Lead | <b>READ CODES</b><br>Read-coded terms recorded as part of the PICANet dataset, i.e. diagnoses, procedures, other co-morbid conditions, interventions and complications. Patient-identifiable information is not required.<br>We are seeking data from a 2-year period 2004-2006.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Completed |
| 8/04/2007  | Mark Peters               | Clinical Unit Chair, P/NICU,<br>Great Ormond Street<br>Hospital.                                                              | RESPIRATORY FAILURE<br>Age / gestation / LOS / outcome / PIM score and diagnostic coding for all cases of respiratory failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Completed |
| 8/04/2007  | Jonathan<br>Round         | Consultant, St George's<br>Hospital PICU, Tooting                                                                             | ONCOLOGY<br>January 2003 to December 2006 data on PICU patients with a primary oncology diagnosis.<br>All information on these patients except name. DOB needed to match with DOB from oncology datasets at a<br>later stage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pending   |
| 0/05/2007  | Peter Davis               | Consultant Paediatric<br>Intensivist, Bristol Royal<br>Hospital for Children                                                  | SWACIC UPDATE 2007         For period April 2003 – March 2006:         1. A breakdown by PCT for numbers of admissions to Bristol per PCT only including those PCTs from the South West (i.e not all our South Wales admissions etc.)         2. A breakdown by diagnostic groups of admissions to Bristol for the South West PCTs.         3. If possible a breakdown by both diagnostic group & PCT of admissions to Bristol from South West PCTs.         4. PIM breakdown and adjusted SMR for admissions to Bristol from South West PCTs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pending   |

# APPENDIX E

# DATA COLLECTION FORM



# **Data Collection Form**

Affix patient sticker here if required

| Admission | Information |
|-----------|-------------|
|           |             |

| Admission number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Family name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NHS Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2nd Family name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Case note number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | First name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date of birth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If DOB estimated,1 = Estimated(or missing, or partly2 = Partly anonymisedanonymised)9 = N/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gestational age       weeks         Answer range 20 to 44 wks         at delivery       Enter 99 if not known         (If age < 2 years)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Male Female Ambiguous N/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Postcode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Multiple birth 1 = Singleton 2 = Twin<br>3 = Triplet 4 = quad 9 = N/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ethnic category Use standard NHS<br>ethnic category and<br>code (see back of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ethnic code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If not 1 or 9 Delivery order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Date of admission <b>20</b><br>to your unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time of admission:<br>to your unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| to your unit  Type of admission to your unit (Tick one box)  Planned - following surgery Planned - other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to your unit       Previous ICU     ICU     PICU     NICU     None     N/K       admission     Image: Compared to the second |
| to your unit          Type of admission to your unit       Planned - following surgery         (Tick one box)       Unplanned - following surgery         Planned - other       Unplanned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to your unit          Previous ICU       ICU       PICU       NICU       None       N/K         admission       ICU       ICU       NICU       None       N/K         (during current       hospital stay)       (Tick one box)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| to your unit          Type of admission to your unit       Planned - following surgery         (Tick one box)       Unplanned - following surgery         (Tick one box)       Planned - other         Unplanned       Unplanned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to your unit          Previous ICU       ICU       PICU       NICU       None       N/K         admission       Image: Comparison of the state of the                |
| to your unit          Type of admission to your unit       Planned - following surgery         (Tick one box)       Unplanned - following surgery         Planned - other       Unplanned         Source of Same Other       Clinic Home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to your unit          Previous ICU       ICU       PICU       NICU       None       N/K         admission       Image: Comparison of the state of the                |
| to your unit          Type of admission to your unit       Planned - following surgery         (Tick one box)       Unplanned - following surgery         (Tick one box)       Planned - other         Unplanned       Unplanned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to your unit          Previous ICU       ICU       PICU       NICU       None       N/K         admission       Image: Comparison of the system         (during current       hospital stay)       (Tick one box)       Image: Comparison of the system       Image: Comparison of the system         Care area admitted from       (includes care area where admitted from another hospital. Tick one box)       Image: Comparison of the system       Image: Comparison of the system         Image: Comparison of the system       Image: Comparison of the system       Image: Comparison of the system       Image: Comparison of the system         Image: Comparison of the system       Image: Comparison of the system       Image: Comparison of the system       Image: Comparison of the system         Image: Comparison of the system       Image: Comparison of the system       Image: Comparison of the system       Image: Comparison of the system         Image: Comparison of the system       Image: Comparison of the system       Image: Comparison of the system       Image: Comparison of the system         Image: Comparison of the system       Image: Comparison of the system       Image: Comparison of the system       Image: Comparison of the system         Image: Comparison of the system       Image: Comparison of the system       Image: Comparison of the system       Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| to your unit          Type of admission to your unit       Planned - following surgery         (Tick one box)       Planned - following surgery         (Tick one box)       Planned - other         Unplanned       Unplanned         Source of admission       Same Other hospital         Other       Image: Clinic Home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to your unit  Previous ICU admission (during current hospital stay) (Tick one box)  Care area admitted from (includes care area where admitted from another hospital. Tick one box)  X-ray, endoscopy, CT scanner or similar Recovery only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| to your unit  Type of admission to your unit Unplanned - following surgery (Tick one box) Planned - other Unplanned  Source of Same Other Unplanned  Source of Same Other Clinic Home Retrieval / transfer Yes No  If Yes, retrieved / Cother specialist team (PICU) transferred Other Other specialist team (Non PICU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | to your unit  Previous ICU admission (during current hospital stay) (Tick one box)  Care area admitted from (includes care area where admitted from another hospital. Tick one box)  X-ray, endoscopy, CT scanner or similar Recovery only HDU (step up / step down unit) Other intermediate care area (Not ICU / PICU / NICU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| to your unit  Type of Admission to your unit  Unplanned - following surgery (Tick one box)  Planned - other Unplanned  Source of Same Other Hospital Clinic Home Admission Planned  Clinic Home Clinic | to your unit          Previous ICU       ICU       PICU       NICU       None       N/K         admission       Image: Constraint of the state of the                |

| Primary | diagnosis | for this | admission |
|---------|-----------|----------|-----------|
|---------|-----------|----------|-----------|

Other reasons for this admission

Operations or procedures performed during this admission

Co-morbidity

# PIM/PIM2 - Medical History

| Evidence available to assess past medical history<br>If yes tick appropriate box (es) | ? Yes No                                    |  |
|---------------------------------------------------------------------------------------|---------------------------------------------|--|
| Cardiac arrest before ICU admission                                                   | ☐ → If yes: cardiac arrest OUT of Hospital? |  |
| Cardiomyopathy or myocarditis                                                         | Admitted following cardiac bypass           |  |
| Severe combined immune deficiency                                                     | Spontaneous cerebral haemorrhage            |  |
| Hypoplastic left heart syndrome                                                       | Neurodegenerative disorder                  |  |
| Leukaemia / lymphoma after 1st induction                                              | Severe developmental delay                  |  |
| Liver failure (main reason for PICU admission)                                        | Human Immunodeficiency Virus (HIV)          |  |

#### PIM/PIM2 - Reason for admission

| Please tick this box if the                                                                                                      | admission was elective:           |               |          |              |     |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------|----------|--------------|-----|
| Please tick one of the bo                                                                                                        | oxes below if main reason for thi | s PICU admis  | sion:    |              |     |
| Asthma                                                                                                                           | Croup                             |               | Recover  | y from surge | ery |
| Bronchiolitis                                                                                                                    | Obstructive sleep apro            | bea           | Diabetic | ketoacidosi  | s 🗌 |
| PIM/PIM2 - Physiology (valid time period: from 1st face to face contact with a doctor until 1 hour after admission to your unit) |                                   |               |          |              |     |
| Systolic blood pressure                                                                                                          |                                   | lood das in 1 |          | Yes          | No  |

| Systolic blood pressure                               | (mmHg)          |     | Blood gas in 1st                             | hour                 | Yes                | No    |
|-------------------------------------------------------|-----------------|-----|----------------------------------------------|----------------------|--------------------|-------|
| PaO <sub>2</sub> (arterial)                           | <b>or</b> . (KF | Pa) | Base excess (arter                           | ,                    |                    | □ · 🗆 |
|                                                       | (mmHg)          |     |                                              | (indic               | ate plus or minus) |       |
| $FiO_2$ (at time of above sample)                     |                 |     | Pupil reaction                               | Both fixed & dilated | Other<br>reaction  | N/K   |
|                                                       |                 |     |                                              |                      |                    |       |
| Mechanical ventilation                                | Yes No          | N/K | Intubation<br>(at time of PaO <sub>2</sub> ) | Ì                    | Yes No             | N/K   |
| CPAP<br>(include mask / nasal /<br>negative pressure) | Yes No          | N/K | Headbox<br>(at time of PaO <sub>2</sub> )    | ĺ                    | Yes No             | N/K   |

| Interventions during this admission to your unit                                                  |                                                                                                  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Invasive ventilation Yes No N/K                                                                   | Non-invasive ventilation Yes No N/K                                                              |  |  |  |  |  |
| If Yes total number of days given                                                                 | If Yes total number of days given                                                                |  |  |  |  |  |
| START invasive ventilation                                                                        | START non- invasive ventilation                                                                  |  |  |  |  |  |
| END invasive ventilation                                                                          | END non-invasive ventilation                                                                     |  |  |  |  |  |
| Please note that start and end dates are for your reference only and are not submitted to PICANet |                                                                                                  |  |  |  |  |  |
| Tracheostomy Yes No N/K                                                                           | ECMO Yes No N/K                                                                                  |  |  |  |  |  |
| IV vasoactive drugs Yes No N/K                                                                    | LVAD Yes No N/K                                                                                  |  |  |  |  |  |
| Renal support Yes No N/K                                                                          | ICP device Yes No N/K                                                                            |  |  |  |  |  |
| (If Yes to Renal Support please tick treatments given)                                            | (If Yes to ICP device please tick as appropriate)                                                |  |  |  |  |  |
| Haemofiltration                                                                                   | Ventricular drain                                                                                |  |  |  |  |  |
| Haemodialysis                                                                                     | ICP bolt                                                                                         |  |  |  |  |  |
|                                                                                                   |                                                                                                  |  |  |  |  |  |
|                                                                                                   | ease note that ventilation for any part of a day<br>hidnight to midnight) is counted as one day. |  |  |  |  |  |
| Plasma exchange                                                                                   | KAMPLE: If a child started ventilation at 23:00                                                  |  |  |  |  |  |
|                                                                                                   | id stopped at 07:00 the next day this would be unted as two days.                                |  |  |  |  |  |
| Discharge Information                                                                             |                                                                                                  |  |  |  |  |  |
| Status at discharge from your unit                                                                |                                                                                                  |  |  |  |  |  |
| Alive Dead Discharged for Palliative                                                              | e care?                                                                                          |  |  |  |  |  |
| Date of discharge                                                                                 | Date of death                                                                                    |  |  |  |  |  |
| Time of discharge                                                                                 | Time of death                                                                                    |  |  |  |  |  |
| Destination following discharge from your unit                                                    | Follow up 30 days post discharge from your unit                                                  |  |  |  |  |  |
| Normal residence                                                                                  | Status Alive Dead N/K                                                                            |  |  |  |  |  |
| Hospice                                                                                           | Date of death                                                                                    |  |  |  |  |  |
| Same hospital                                                                                     | Normal residence                                                                                 |  |  |  |  |  |
| Other hospital                                                                                    | Hospice                                                                                          |  |  |  |  |  |
| ICU PICU NICU HDU SCBU Ward Other                                                                 | Same hospital                                                                                    |  |  |  |  |  |
|                                                                                                   | Other hospital                                                                                   |  |  |  |  |  |
|                                                                                                   | ICU PICU NICU HDU SCBU Ward Other                                                                |  |  |  |  |  |
|                                                                                                   |                                                                                                  |  |  |  |  |  |
|                                                                                                   |                                                                                                  |  |  |  |  |  |

#### Form completed by:

#### Comments

#### User defined fields

| Variable name | Description |  |  |
|---------------|-------------|--|--|
|               |             |  |  |
|               |             |  |  |
|               |             |  |  |
|               |             |  |  |
|               |             |  |  |
|               |             |  |  |
|               |             |  |  |

#### Ethnic categories

These are the standard ethnic categories to be used for the collection of ethnicity information

| Ethni | c category              |                                                                                                       | Codes            |
|-------|-------------------------|-------------------------------------------------------------------------------------------------------|------------------|
| а     | White                   | British<br>Irish<br>Any other White background                                                        | A<br>B<br>C      |
| b     | Mixed                   | White and Black Caribbean<br>White and Black African<br>White and Asian<br>Any other mixed background | D<br>E<br>F<br>G |
| С     | Asian and Asian British | Indian<br>Pakistani<br>Bangladeshi<br>Any other Asian background                                      | H<br>J<br>K<br>L |
| d     | Black or black British  | Caribbean<br>African<br>Any other Black background                                                    | M<br>N<br>P      |
| е     | Other ethnic groups     | Chinese<br>Any other ethnic group                                                                     | R<br>S           |
| f     | Not stated              | Not stated                                                                                            | Z                |

A query to picanet@leeds.ac.uk will reach every team member

Individual contact details

Roger Parslow 0113 343 4856 r.c.parslow@leeds.ac.uk Krishnan Thiru 020 7762 6713 ThiruK1@gosh.nhs.uk

# APPENDIX F INFORMATION LEAFLET

#### What does PICANet do?

PICANet collects information on all children who are admitted to a paediatric (children's) intensive care unit. You don't need to do anything for your child to be included. Why is PICANet important?

The information that we collect for PICANet is helping to find out the best ways to treat and care for children who are ill, so that intensive care services can be better planned for and provided.

#### How is PICANet funded?

At present, several healthcare commissioners, the Department of Health and the Royal Hospital for Sick Children, Edinburgh pay for this project.

#### What information is needed?

PICANet collects exactly the same information on all children cared for in paediatric intensive care units. Personal details, like name and date of birth, help us to follow your child's progress, if they are moved to another paediatric intensive care unit.

#### Where can I get more information? If you have any questions about PICANet you can:

- ask your child's nurse or doctor for more information
- visit the PICANet website (see below)
- email PICANet (see below)
- contact a member of the PICANet team on one of the telephone numbers below

#### **PICANet contact information:**

#### Website: www.picanet.org.uk

Email: picanet@leeds.ac.uk

Patricia McKinney, Roger Parslow & Angie Willshaw PICANet Paediatric Epidemiology Group Centre for Epidemiology & Biostatistics The Leeds Institute of Genetics, Health & Therapeutics University of Leeds 30 Hyde Terrace Leeds LS2 9LN

> <u>p.a.mckinney@leeds.ac.uk</u> <sup>™</sup> 0113 343 4842 <u>r.c.parslow@leeds.ac.uk</u> <sup>™</sup> 0113 343 4856 <u>a.willshaw@leeds.ac.uk</u> <sup>™</sup> 0113 343 8125

Information about your child's care, treatment and condition is also collected.

We can use your postcode to help plan future paediatric intensive care services in your area.

#### How is information collected?

A member of staff records information about your child's condition or illness onto a paper form in the medical notes. This information is then put onto a computer, sent to the University of Leeds and kept there on a computer.

#### Will the information be safe?

We send all information in a very safe way and keep it stored confidentially on a main computer, which is kept a safe room. Noone can see the information, unless it is their job to do so. There is no way at all that your child can be identified in expected.

be identified in any of our reports.

#### What will the information be used for?

We use the information to help us write reports and to decide what research on children's intensive care needs to be done. Because we collect a lot of information, it means that we can look at what is happening all over the country and not just in this hospital.

We are also about to link up with the Office of National Statistics, so that we can see how your child's health is, after they have left the intensive care unit.

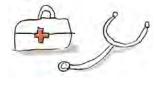
#### What have we found out so far?

During the past few years, we have shown that about 15,000 children are admitted to paediatric intensive care units in England/Wales and Edinburgh. Almost half of these children are less than one year old. This type of information is useful, because it helps the hospitals and the people who plan health services to know what to expect and to be better prepared.

#### Does my child have to be included?

If you do not want information on your child included in PICANet, please tell the nurse or doctor caring for your child. Your decision will not alter the care your child receives in this, or any other hospital.

#### **Contact information (cont)**


Elizabeth Draper PICANet Department of Health Sciences University of Leicester 22 -28 Princess Road West Leicester LE1 6TP msn@leicester.ac.uk

🕾 0116 252 3200



 $\bowtie$ 

Krish Thiru Pan Thames Co-ordinator PICANet Cardiorespiratory and Critical Care Division Room 8086, Level 8 – Nurses Home Great Ormond Street Hospital for Children Great Ormond Street London WC1 3JH thiruk1@gosh.nhs.uk  $\mathfrak{M}$  020 7762 6713





Paediatric Intensive Care Audit Network

Information leaflet for parents, families and guardians of children admitted to paediatric intensive



Drawn by Zoe aged 8.

Version 4.0 Aug 2006

### APPENDIX G DATA VALIDATION REPORT

# The Royal Hospital

#### Key to clinical code errors

Value(s):

READ code followed by READ code description followed by the text recorded in the unit notes e.g. XSDOK- Bronchiolitis [respiratory distress]

#### Example errors:

A) (no code) – (no description) [(no notes)], this means nothing has been supplied.

B) X44vY – [ASD], this means an invalid READ code and no READ code description have been supplied.

C) 00000 – [abdominal tumour resection], this means no READ code and no READ code description have been supplied.

| Admission number 200421  | Casenote number 233X            | Admitted on 12/02/2004                                | PICANet ID 450                                                    |
|--------------------------|---------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|
| Reason                   | Variable(s)                     | Value(s)                                              | Comment                                                           |
| Missing primary reason   | Primary reason for admission    | (No code) - (No desription) [(No notes)]              | Must have a primary reason for admission recorded                 |
| Admission number 200462  | Casenote number 433RX           | Admitted on 15/04/2004                                | PICANet ID 552                                                    |
| Reason                   | Variable(s)                     | Value(s)                                              | Comment                                                           |
| Missing value            | Intubation                      |                                                       |                                                                   |
| Missing value            | Number of days intubated        |                                                       |                                                                   |
| Admission number 200479  | Casenote number 756X            | Admitted on 01/05/2004                                | PICANet ID 660                                                    |
| Reason                   | Variable(s)                     | Value(s)                                              | Comment                                                           |
| Incorrect concept domain | Primary reason for admission    | X20UN - Nissen fundoplication [Nissen fundoplication] | Primary reason must be a disorder                                 |
| Missing value            | Follow-up status                |                                                       |                                                                   |
| Admission number 2004111 | Casenote number 999X            | Admitted on 16/12/2004                                | PICANet ID 1273                                                   |
| Reason                   | Variable(s)                     | Value(s)                                              | Comment                                                           |
| Incongruent value        | Hospital location               | Normal residence / Ward                               | Discharge destination not hospital but hospital location recorded |
| Logic error              | Admission date / Discharge date | 12/03/2003 / 10/03/2003                               | Please check dates; cannot be discharged before admitted          |
| Missing value            | Unit discharge status           | Not known                                             | Status at discharge from your unit expected (Alive or Dead)       |

## APPENDIX H MONTHLY ADMISSIONS REPORT

| Admissions |       | SITEID |     |          |           |      |      |      |      |      |      |      |     |           |      |      |     |      |     |     |      |     |      |     |     |      |     |     |       |          |       |
|------------|-------|--------|-----|----------|-----------|------|------|------|------|------|------|------|-----|-----------|------|------|-----|------|-----|-----|------|-----|------|-----|-----|------|-----|-----|-------|----------|-------|
| Year       | Month | 1      | 2   | 3        | 4         | 5    | 6    | 8    | 9    | 10   | 11   | 12   | 13  | 14        | 15   | 16   | 17  | 18   | 19  | 20  | 21   | 22  | 23   | 24  | 25  | 26   | 27  | 28  | 29    | 31       | Total |
| 2004       | 1     | 109    | 23  | 71       | 33        | 39   | 99   | 56   | 34   | 89   | 133  | 114  | 20  | 48        | 29   | 42   | 10  | 54   | 19  | 26  | 35   | 18  | 30   | 28  | 3   | 44   | 29  | 5   | 45    |          | 1285  |
|            | 2     | 92     | 36  | 70       | 35        | 24   | 77   | 56   | 37   | 89   | 143  | 87   | 22  | 50        | 18   | 39   | 4   | 53   | 7   | 19  | 33   | 24  | 24   | 33  | 7   | 47   | 20  | 8   | 56    |          | 1210  |
|            | 3     | 86     | 35  | 50       | 43        | 27   | 68   | 46   | 40   | 104  | 167  | 106  | 20  | 53        | 28   | 39   | 12  | 58   | 18  | 23  | 25   | 28  | 43   | 31  | 3   | 53   | 22  | 2   | 48    |          | 1278  |
|            | 4     | 87     | 20  | 51       | 37        | 25   | 87   | 55   | 24   | 78   | 149  | 102  | 23  | 36        | 27   | 27   | 8   | 52   | 11  | 31  | 31   | 23  | 26   | 28  | 7   | 48   | 16  | 7   | 38    |          | 1154  |
|            | 5     | 71     | 12  | 54       | 34        | 15   | 78   | 50   | 31   | 75   | 151  | 101  | 36  | 44        | 43   | 33   | 4   | 45   | 13  | 28  | 37   | 18  | 25   | 28  | 4   | 46   | 23  | 2   | 42    |          | 1143  |
|            | 6     | 70     | 16  | 54       | 33        | 13   | 77   | 63   | 46   | 84   | 161  | 92   | 31  | 51        | 29   | 23   | 9   | 43   | 14  | 25  | 28   | 14  | 37   | 33  | 6   | 54   | 17  | 4   | 39    |          | 1166  |
|            | 7     | 72     | 18  | 47       | 39        | 23   | 60   | 51   | 32   | 76   | 160  | 92   | 26  | 53        | 34   | 29   | 5   | 46   | 17  | 18  | 30   | 18  | 26   | 27  | 7   | 41   | 13  |     | 39    |          | 1099  |
|            | 8     | 78     | 23  | 45       | 28        | 18   | 66   | 53   | 38   | 74   | 162  | 75   | 22  | 47        | 28   | 23   | 5   | 40   | 18  | 25  | 22   | 21  | 42   | 33  | 8   | 53   | 12  | 3   | 28    |          | 1090  |
|            | 9     | 82     | 24  | 52       | 44        | 19   | 67   | 41   | 19   | 84   | 158  | 80   | 28  | 41        | 30   | 27   | 9   | 47   | 9   | 22  | 32   | 33  | 37   | 16  | 8   | 50   | 21  | 3   | 28    |          | 1111  |
|            | 10    | 74     | 24  | 50       | 44        | 11   | 72   | 32   | 29   | 70   | 138  | 97   | 25  | 48        | 31   | 34   | 7   | 51   | 18  | 27  | 23   | 18  | 26   | 32  | 9   | 74   | 21  | 3   | 43    |          | 1131  |
|            | 11    | 90     | 32  | 57       | 44        | 24   | 57   | 52   | 30   | 79   | 145  | 105  | 27  | 51        | 40   | 43   | 6   | 60   | 15  | 22  | 25   | 21  | 36   | 24  | 4   | 60   | 19  | 4   | 39    |          | 1211  |
|            | 12    | 85     | 30  | 60       | 35        | 30   | 70   | 39   | 36   | 91   | 150  | 128  | 37  | 31        | 35   | 35   | 3   | 49   | 15  | 31  | 22   | 25  | 28   | 27  | 7   | 44   | 21  | 4   | 47    | 23       | 1238  |
| 2004 Total |       | 996    | 293 | 661      | 449       | 268  | 878  | 594  | 396  | 993  | 1817 | 1179 | 317 | 553       | 372  | 394  | 82  | 598  | 174 | 297 | 343  | 261 | 380  | 340 | 73  | 614  | 234 | 45  | 492   | 23       | 14116 |
|            |       |        |     |          |           |      |      |      |      |      |      |      |     |           |      |      |     |      |     |     |      |     |      |     |     |      |     |     |       |          |       |
| 2005       | 1     | 73     | 33  | 55       | 34        | 24   | 79   | 38   | 35   | 91   | 150  | 95   | 22  | 56        | 33   | 36   | 18  | 64   | 19  | 20  | 31   | 20  | 28   | 17  | 6   | 50   | 24  | 5   | 43    | 34       | 1233  |
|            | 2     | 73     | 20  | 64       | 39        | 31   | 81   | 35   | 30   | 87   | 98   | 92   | 31  | 43        | 36   | 35   | 5   | 40   | 13  | 17  | 27   | 29  | 36   | 29  | 8   | 59   | 24  | 1   | 48    | 37       | 1168  |
|            | 3     | 92     | 13  | 60       | 45        | 22   | 68   | 58   | 45   | 77   | 133  | 103  | 27  | 39        | 55   | 34   | 9   | 64   | 18  | 24  | 32   | 24  | 26   | 25  | 5   | 46   | 24  | 9   | 39    | 42       | 1258  |
|            | 4     | 74     | 22  | 56       | 31        | 24   | 72   | 43   | 39   | 86   | 132  | 89   | 29  | 46        | 31   | 34   | 5   | 53   | 18  | 24  | 23   | 18  | 26   | 19  | 7   | 58   | 16  | 2   | 49    | 33       | 1159  |
|            | 5     | 81     | 23  | 60       | 40        | 20   | 68   | 58   | 30   | 100  | 129  | 73   | 26  | 37        | 29   | 30   | 13  | 44   | 14  | 23  | 20   | 18  | 26   | 28  | 6   | 57   | 24  | 4   | 34    | 29       | 1144  |
|            | 6     | 78     | 12  | 71       | 34        | 24   | 69   | 36   | 31   | 101  | 127  | 97   | 38  | 58        | 31   | 27   | 9   | 35   | 9   | 31  | 35   | 22  | 36   | 30  | 8   | 55   | 21  | 5   | 40    | 35       | 1205  |
|            | 7     | 75     | 16  | 60       | 39        | 25   | 74   | 32   | 30   | 79   | 153  | 103  | 36  | 65        | 31   | 30   | 11  | 55   | 8   | 26  | 27   | 26  | 29   | 16  | 7   | 53   | 22  | 4   | 41    | 28       | 1201  |
|            | 8     | 66     | 9   | 59       | 32        | 16   | 54   | 46   | 32   | 75   | 134  | 88   | 23  | 60        | 35   | 21   | 7   | 44   | 12  | 26  | 27   | 22  | 26   | 24  | 7   | 61   | 24  | 6   | 36    | 47       | 1119  |
|            | 9     | 85     | 20  | 59       | 31        | 20   | 66   | 48   | 29   | 78   | 115  | 85   | 27  | 50        | 34   | 30   | 5   | 55   | 20  | 32  | 18   | 28  | 34   | 30  | 10  | 71   | 23  | 2   | 40    | 40       | 1185  |
|            | 10    | 63     | 23  | 60       | 31        | 20   | 76   | 33   | 36   | 91   | 119  | 75   | 20  | 61        | 34   | 39   | 4   | 45   | 11  | 25  | 23   | 16  | 36   | 26  | 11  | 61   | 23  | 3   | 33    | 37       | 1135  |
|            | 11    | 77     | 24  | 58       | 37        | 23   | 76   | 33   | 36   | 96   | 117  | 113  | 31  | 56        | 34   | 50   | 6   | 48   | 19  | 28  | 30   | 24  | 31   | 31  | 9   | 63   | 32  | 4   | 61    | 28       | 1275  |
|            | 12    | 84     | 21  | 53       | 32        | 25   | 88   | 43   | 26   | 73   | 139  | 119  | 30  | 47        | 36   | 46   | 5   | 50   | 24  | 36  | 21   | 33  | 23   | 22  | 5   | 54   | 35  | 5   | 51    | 37       | 1263  |
| 2005 Total |       | 921    | 236 | 715      | 425       | 274  | 871  | 503  | 399  | 1034 | 1546 | 1132 | 340 | 618       | 419  | 412  | 97  | 597  | 185 | 312 | 314  | 280 | 357  | 297 | 89  | 688  | 292 | 50  | 515   | 427      | 14345 |
|            |       |        | 45  |          |           |      |      |      |      | 100  | 407  | 400  | ~~~ |           | ~~~  | ~~~  | -   | ~~~  | 10  | 07  | 07   |     | 10   |     | 4.0 |      |     | _   | ~ ~ ~ |          | 1000  |
| 2006       | 1     | 92     | 15  | 66       | 30        | 37   | 77   | 44   | 34   | 108  | 137  | 103  | 29  | 54        | 39   | 38   | 5   | 68   | 16  | 27  | 27   | 41  | 42   | 29  | 12  | 70   | 28  | 5   | 31    | 32       | 1336  |
|            | 2     | 68     | 29  | 51       | 47        | 30   | 80   | 28   | 35   | 104  | 113  | 104  | 18  | 45        | 46   | 35   | 6   | 59   | 12  | 22  | 31   | 27  | 33   | 21  | 4   | 59   | 19  | 7   | 48    | 35       | 1216  |
|            | 3     | 68     | 23  | 66       | 35        | 30   | 80   | 42   | 32   | 116  | 152  | 89   | 17  | 47        | 41   | 39   | 7   | 49   | 17  | 27  | 40   | 27  | 40   | 22  | 7   | 67   | 26  | 4   | 42    | 48       | 1300  |
|            | 4     | 88     | 13  | 52       | 27        | 18   | 65   | 49   | 33   | 83   | 134  | 91   | 25  | 50        | 36   | 27   | 7   | 46   | 17  | 32  | 33   | 26  | 41   | 22  | 1   | 51   | 31  | 4   | 40    | 39       | 1187  |
|            | 5     | 90     | 19  | 57       | 39        | 25   | 80   | 51   | 29   | 90   | 138  | 88   | 28  | 64        | 31   | 40   | 7   | 49   | 19  | 25  | 22   | 28  | 36   | 17  | 11  | 64   | 19  | 2   | 30    | 38       | 1236  |
|            | 6     | 79     | 17  | 58       | 40        | 20   | 65   | 52   | 31   | 101  | 142  | 84   | 28  | 55        | 31   | 23   | 5   | 37   | 19  | 15  | 40   | 25  | 25   | 26  | /   | 62   | 27  | 3   | 43    | 33       | 1193  |
|            | 7     | 99     | 15  | 54       | 37        | 21   | 80   | 42   | 27   | 88   | 155  | 84   | 32  | 52        | 46   | 24   | 2   | 50   | 15  | 20  | 20   | 21  | 37   | 18  | 5   | 46   | 21  | 2   | 29    | 29       | 1171  |
|            | 8     | 106    | 23  | 50       | 35        | 22   | 65   | 48   | 22   | 82   | 140  | 79   | 30  | 72        | 36   | 15   | 3   | 42   | 13  | 19  | 32   | 14  | 34   | 23  | 11  | 49   | 25  | 2   | 26    | 39       | 1157  |
|            | 9     | 82     | 21  | 53       | 36        | 21   | 63   | 46   | 24   | 70   | 143  | 88   | 26  | 52        | 37   | 23   | 5   | 47   | 17  | 16  | 30   | 32  | 31   | 23  | 8   | 53   | 30  | 3   | 28    | 25       | 1133  |
|            | 10    | 92     | 15  | 45       | 48        | 27   | 88   | 61   | 28   | 78   | 127  | 86   | 26  | 65        | 30   | 37   | 5   | 46   | 14  | 23  | 25   | 19  | 36   | 29  | 5   | 59   | 32  | 0   | 47    | 39       | 1232  |
|            | 11    | 101    | 27  | 53<br>54 | 32        | 28   | 78   | 42   | 35   | 101  | 132  | 90   | 32  | 60<br>20  | 35   | 35   | 12  | 51   | 14  | 22  | 30   | 26  | 35   | 27  | 67  | 57   | 28  | 2   | 41    | 39<br>25 | 1271  |
| 2006 Total | 12    | 99     | 17  |          | 48<br>454 | 30   | 108  | 25   | 35   | 98   | 117  | 114  | 31  | 39<br>655 | 42   | 33   | 10  | 41   | 17  | 28  | 25   | 21  | 32   | 18  | /   | 55   | 32  |     | 33    | 35       | 1247  |
| 2006 Total |       | 1064   | 234 | 659      | 454       | 309  | 929  | 530  | 365  | 1119 | 1630 | 1100 | 322 | 655       | 450  | 369  | 74  | 585  | 190 | 276 | 355  | 307 | 422  | 275 | 90  | 692  | 318 | 37  | 438   | 431      | 14679 |
| Total      |       | 2981   | 763 | 2035     | 1328      | 851  | 2678 | 1627 | 1160 | 3146 | 4993 | 3411 | 979 | 1826      | 1241 | 1175 | 253 | 1780 | 549 | 885 | 1012 | 848 | 1159 | 912 | 252 | 1994 | 844 | 132 | 1445  | 881      | 43140 |
| iotai      |       | 2301   | 103 | 2000     | 1320      | 0.01 | 2010 | 1027 | 1100 | 5140 | 4333 | J411 | 313 | 1020      | 1241 | 11/3 | 200 | 1700 | J#3 | 005 | 1012 | 040 | 1153 | 312 | 232 | 1334 | 044 | 132 | 1443  | 001      | +3140 |

## APPENDIX I ERROR RATE REPORT



# Unit import and error status report

January 2004 - December 2006

| SITEID | Last<br>imported | ExportID | Admissions | First<br>admission | Most recent<br>admission | Missing<br>value | Out of range | Invalid<br>value | Logic<br>violation | Incongruity | Check<br>value | Invalid<br>code | Uncoded reason | Total | Error<br>rate |
|--------|------------------|----------|------------|--------------------|--------------------------|------------------|--------------|------------------|--------------------|-------------|----------------|-----------------|----------------|-------|---------------|
| 25     | 22/02/2007       | 113      | 252        | 05/01/2004         | 29/12/2006               |                  |              |                  |                    |             |                |                 |                | 0     | 0.00          |
| 13     | 13/04/2007       | 105      | 979        | 02/01/2004         | 29/12/2006               |                  |              |                  |                    |             |                |                 |                | 0     | 0.00          |
| 10     | 18/04/2007       | 126      | 3146       | 02/01/2004         | 31/12/2006               |                  |              |                  |                    |             |                |                 |                | 0     | 0.00          |
| 15     | 29/01/2007       | 98       | 1241       | 01/01/2004         | 31/12/2006               |                  |              |                  |                    |             |                |                 |                | 0     | 0.00          |
| 22     | 13/04/2007       | 85       | 848        | 04/01/2004         | 30/12/2006               |                  |              |                  |                    |             |                |                 |                | 0     | 0.00          |
| 20     | 01/05/2007       | 98       | 885        | 01/01/2004         | 31/12/2006               |                  |              |                  |                    |             |                |                 |                | 0     | 0.00          |
| 6      | 09/05/2007       | 70       | 2678       | 02/01/2004         | 31/12/2006               |                  |              |                  |                    |             |                |                 |                | 0     | 0.00          |
| 9      | 22/02/2007       | 255      | 1160       | 02/01/2004         | 31/12/2006               |                  |              |                  |                    |             |                |                 |                | 0     | 0.00          |
| 26     | 23/03/2007       | 100      | 1994       | 01/01/2004         | 30/12/2006               | 1                |              |                  |                    |             |                |                 |                | 1     | 0.00          |
| 4      | 17/05/2007       | 264      | 1328       | 01/01/2004         | 31/12/2006               |                  |              |                  | 1                  |             |                |                 |                | 1     | 0.00          |
| 24     | 19/04/2007       | 124      | 912        | 01/01/2004         | 31/12/2006               | 1                |              |                  |                    |             |                |                 |                | 1     | 0.00          |
| 31     | 04/04/2007       | 113      | 881        | 07/12/2004         | 30/12/2006               |                  |              |                  |                    |             |                | 1               |                | 1     | 0.00          |
| 11     | 29/03/2007       | 76       | 4993       | 01/01/2004         | 31/12/2006               | 1                | 2            |                  |                    | 2           | 2              |                 |                | 7     | 0.00          |
| 14     | 31/01/2007       | 45       | 1826       | 02/01/2004         | 30/12/2006               | 1                |              |                  |                    | 1           |                | 1               |                | 3     | 0.00          |
| 8      | 16/05/2007       | 147      | 1627       | 01/01/2004         | 31/12/2006               | 3                |              |                  |                    |             |                |                 |                | 3     | 0.00          |
| 27     | 01/05/2007       | 183      | 844        | 01/01/2004         | 31/12/2006               | 2                |              |                  |                    |             |                |                 |                | 2     | 0.00          |
| 23     | 09/05/2007       | 326      | 1159       | 01/01/2004         | 31/12/2006               | 3                |              |                  |                    |             | 1              |                 |                | 4     | 0.00          |
| 16     | 01/05/2007       | 55       | 1175       | 01/01/2004         | 30/12/2006               | 4                |              |                  |                    |             | 1              |                 |                | 5     | 0.004         |
| 3      | 17/04/2007       | 94       | 2035       | 01/01/2004         | 31/12/2006               | 2                |              |                  | 1                  | 10          | 2              | 2               |                | 17    | 0.00          |
| 18     | 30/03/2007       | 84       | 1780       | 01/01/2004         | 29/12/2006               | 16               |              |                  |                    |             |                |                 |                | 16    | 0.00          |
| 29     | 04/05/2007       | 165      | 1445       | 01/01/2004         | 30/12/2006               | 11               |              |                  |                    |             | 2              |                 |                | 13    | 0.00          |
| 5      | 16/05/2007       | 145      | 851        | 01/01/2004         | 30/12/2006               | 10               |              |                  |                    |             |                |                 |                | 10    | 0.01          |
| 19     | 19/03/2007       | 324      | 549        | 02/01/2004         | 30/12/2006               | 10               |              |                  |                    |             |                |                 |                | 10    | 0.01          |
| 28     | 10/05/2007       | 159      | 132        | 05/01/2004         | 28/12/2006               | 2                |              |                  |                    |             | 1              |                 |                | 3     | 0.02          |
| 12     | 28/02/2007       | 8        | 3411       | 01/01/2004         | 31/12/2006               | 90               |              | 7                | 1                  | 4           | 3              | 2               |                | 107   | 0.03          |
| 21     | 09/03/2007       | 49       | 1012       | 02/01/2004         | 31/12/2006               | 53               | 1            |                  | 1                  |             | 1              |                 |                | 56    | 0.05          |
| 17     | 23/02/2007       | 78       | 253        | 02/01/2004         | 25/12/2006               | 14               |              |                  |                    | 1           |                |                 |                | 15    | 0.05          |
| 2      | 17/01/2007       | 199      | 763        | 01/01/2004         | 30/12/2006               | 64               |              |                  | 1                  |             |                |                 |                | 65    | 0.08          |
| 1      | 23/03/2007       | 20       | 2981       | 01/01/2004         | 31/12/2006               | 282              | 24           |                  | 7                  | 37          | 4              | 39              |                | 393   | 0.13          |
|        |                  |          | 43140      |                    |                          | 570              | 27           | 7                | 12                 | 55          | 17             | 45              | 0              | 733   | 0.01          |

Last imported: the date on which the data was most recently exported ExportID: the ID of the most recent export (this increments with each export) Total admissions: the number of admissions during the time period of this report First admission: the earliest admission date included in this report Most recent admission: the latest admission date included in this report Missing value: value missing when required Out of range: value outside normal ranges (as specified in the manual) Invalid value: value not valid (e.g. wrongly enumerated code) Logic violation: illogical values supplied (e.g. a discharge date before an admission date) Incongruity: value supplied when not required (e.g. a retrieval team specified when the patient was not retrieved) Check value: value requiring confirmation Invalid code: invalid Read Code supplied Uncoded reason: no Read Code supplied Total: total number of errors Error rate: number of errors

## APPENDIX J POLICY FOR UNITS FALLING OUTSIDE THE CONTROL LIMITS

# PICANet policy on PICUs lying outside the control limits of the mortality ratio funnel plots (PICANet November 2005)

### J.1 Background – mortality ratios and funnel plots

PICANet is required by the Department of Health to report on the mortality outcomes of all children admitted for paediatric intensive care. The PICANet Clinical Advisory Group and Steering Group recommended that the mortality outcomes from each PICU be adjusted for the illness severity of the child at admission using the Paediatric Index of Mortality (PIM).<sup>1</sup> PICANet reports the unadjusted mortality outcome from all PICUs and a mortality ratio based on the ratio of observed mortality in each PICU to the expected mortality calculated using PIM. From 2005, revised coefficients for PIM have been used derived from the recently completed United Kingdom Paediatric Intensive Care Outcome Study.<sup>2</sup> PIM2<sup>3</sup> has been used for risk-adjustment in this report for 2006 only and will be used in future reports as the data become available.

Earlier work published by members of PICANet team<sup>4</sup> has highlighted the problems of attempting to rank PICUs on their annual mortality, whether unadjusted or adjusted. PICANet, however, has also recognised the need to identify units which appear to have outcomes very different to other units. Consequently, PICANet has published a funnel plot of the observed to expected mortality ratio of individual PICUs. The funnel plots are constructed in such a way that there is an approximately 5% chance of a PICU falling outside the control limits, if the distribution of the mortality ratios is random.

The mortality ratio is calculated for each PICU by dividing the expected number of deaths calculated using the published PIM algorithm by the observed number of deaths for each PICU. The mortality ratio is then plotted on the y-axis against the number of admissions to the PICU on the x-axis. In order to satisfy the condition that if the overall distribution of the mortality ratios is random there exists an approximately 5% chance of a PICU falling outside the control limits, then the upper and lower control limits constructed at an individual PICU level must represent not 95% confidence intervals, but 99.9% confidence intervals around a mortality ratio of 1 by number of admissions.<sup>5</sup> This is analogous to increasing the confidence interval (or significance level) when correcting for multiple comparisons in data containing numerous groups.

# J.2 Data outliers

- A PICU whose mortality ratio lies outside of these control limits will be identified as having returned data that is markedly different to the other PICUs.
- It is important to note that a PICU lying outside the control limits is not sufficient evidence to suggest a PICU has either markedly higher or markedly lower mortality than the other PICUs, it merely indicates that the data they have returned is different to that of other PICUs.
- For those PICUs that do lie outside the control limits, the principals of clinical governance should apply:
  - PICANet will raise the issue with the lead clinician of the PICU and the Trust Chief Executive
  - PICANet will work with the PICU and the Trust, following the plan below until the issue is resolved.

In these circumstances, PICANet will:

- i) Review the data to investigate whether there are data driven reasons for a PICU lying outside of the control limits (it is known that risk-adjustment tools can be unreliable when a PICU has a particularly high proportion of patients at either end of the bounds of the tool.)
- ii) Review the data quality of the PICU. The quality of the data is the PICUs' responsibility. PICANet will provide feedback from PICU visits and central validation procedures. PICUs will be expected to check the quality of individual data items.
- iii) Plot the data quality indicators over time to identify whether the anomaly can be traced to a certain data collection period.
- iv) Plot the mortality ratio over time to identify whether the anomaly can be traced to a certain data collection period.
- v) Plot the observed mortality over time to identify whether the anomaly can be traced to a certain data collection period.
- vi) Plot the expected mortality over time to identify whether the anomaly can be traced to a certain data collection period.
- vii) Investigate the primary reason for admission to the PICU. If the PICU has a markedly high proportion of some primary reason of admission to the PICU compared with other PICUs this may suggest further refinements to the risk-adjustment method are required.
- viii) Produce a brief summary report of the above to be forwarded to the lead clinician and Chief Executive at the PICU concerned, together with an invitation to meet in person to review the data with the PICANet team.

Where reference is made to the Chief Executive, it is accepted that they may be represented by their clinical governance lead.

**NOTE:** Excess mortality in particular sub-groups of patients or associated with other aspects of service provision may be identified using different statistical methods. The process outlined above will be implemented wherever anomalous results/outliers are identified.

## J.3 References

- 1) Parry GJ, Gould CR, McCabe CJ, Tarnow-Mordi WO. Annual league tables of hospital mortality in neonatal intensive care: A longitudinal study. BMJ 1998; 316:1931-1935.
- 2) Brady AR, Harrison D, Black S, Jones S, Rowan K, Pearson G, Ratcliffe J, Parry GJ, on behalf of the UK PICOS Study Group. Assessment and Optimization of Mortality Prediction Tools for Admissions to Pediatric Intensive Care in the United Kingdom. Pediatrics 2006; 117: 733-742.
- 3) Shann F, Slater A, Pearson G. PIM 2: a revised version of the Paediatric Index of mortality. Intensive Care Med 2003; 29:278-285
- 4) Shann F, Pearson G, Slater A, Wilkinson K, Paediatric index of mortality (PIM): a mortality prediction model for children in intensive care. Intensive Care Med 1997; 23:201-207
- 5) Spiegelhalter D. Funnel plots for institutional comparison. Qual. Saf. Health Care, Dec 2002; 11: 390- 391.

# APPENDIX K PUBLICATIONS/PRESENTATIONS

# K.1 Presentations

| Meeting/Conference                                                                                                   | Venue                                                 | Date       | Presentation Title                                                                                                                                                                | PICANet<br>Team<br>Attendees                                 |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Presentation to Glasgow<br>PICU team                                                                                 | Glasgow                                               | 18/08/2003 | PICANet                                                                                                                                                                           | Sam Jones &<br>Tricia McKinney                               |
| NW Paediatric Intensive<br>Care Seminar (North<br>West Specialised<br>Commissioning Group)                           | Dunkenhalgh Hotel,<br>Clayton-le-Moors,<br>Lancashire | 23/06/2004 | PICANet: Results of national activity                                                                                                                                             | Sam Jones &<br>Roger Parslow                                 |
| PICANet AGM                                                                                                          | London                                                | 24/06/2004 | Presentation of National report                                                                                                                                                   | PICANet Team                                                 |
| Welsh National<br>Commissioning Advisory<br>Board Meeting                                                            | Royal Welsh<br>Showground, Builth<br>Wells            | 28/07/2004 | PICANet: Presentation of National and Welsh report                                                                                                                                | Liz Draper &<br>Nicky Davey                                  |
| Strategic Issues in Health<br>Care Management, Sixth<br>International Conference                                     | University of St<br>Andrews                           | 02/09/2004 | Collection of personally<br>identifiable information for a<br>national clinical database: how<br>feasible is it to obtain signed<br>consent?                                      | Sam Jones                                                    |
| PICS SG                                                                                                              | Cambridge<br>University                               | 09/09/2004 | PICANet: How can it be used for research and audit?                                                                                                                               | Nicky Davey,<br>Sam Jones,<br>Roger Parslow &<br>Krish Thiru |
| Confidential Enquiry into<br>Maternal and Child<br>Health                                                            | London                                                | 08/03/2005 | National Paediatric Intensive Care<br>Database (PICANet)                                                                                                                          | Liz Draper                                                   |
| Intensive Care National<br>Audit & Research Centre<br>(ICNARC): Eight Annual<br>Meeting of the Case Mix<br>Programme | Savoy Hotel,<br>London                                | 13/04/2005 | Why is it important to include<br>information on paediatric<br>admissions in the new Case Mix<br>Programme Dataset?                                                               | Sam Jones                                                    |
| Pan Thames Report<br>Update: Commissioning<br>Consortium                                                             | London                                                | 06/05/2005 | PICANet: Update on Pan Thames data quality for commissioning                                                                                                                      | Krish Thiru &<br>Sam Jones                                   |
| Paediatric Intensive Care<br>Study Day                                                                               | Royal Manchester<br>Children's Hospital               | 10/05/2005 | The epidemiology of critical illness in children                                                                                                                                  | Roger Parslow                                                |
| Trent PIC commissioners                                                                                              | QMC, Nottingham                                       | 12/05/2005 | PICANet: Presentation of National report 2003-2004                                                                                                                                | Liz Draper                                                   |
| Paediatric Intensive Care<br>Trainee Meeting                                                                         | Royal Liverpool<br>Children's Hospital<br>(Alder Hey) | 13/05/2005 | Role of PICANet and the<br>relevance of the national audit to<br>the clinical community                                                                                           | Nicky Davey &<br>Sam Jones                                   |
| PICANet AGM                                                                                                          | London                                                | 24/05/2005 | Presentation of National report                                                                                                                                                   | PICANet Team                                                 |
| NORCOM, TRENTCOM<br>& LNR PIC<br>commissioners                                                                       | Leicester                                             | 13/06/2005 | PICANet in LNR, Trent & South<br>Yorkshire PCTs                                                                                                                                   | Liz Draper                                                   |
| Health Protection Agency<br>(HPA) annual conference                                                                  | Warwick                                               | 12/09/2005 | Mortality, deprivation and ethnicity<br>of critically ill children in England<br>and Wales: preliminary findings<br>from the Paediatric Intensive Care<br>Audit Network (PICANet) | Roger Parslow                                                |
| Paediatric Critical Care<br>Network Board (East<br>leeds PCT)                                                        | Leeds                                                 | 06/10/2005 | PICANet: Presentation of national data and relevance to commissioning                                                                                                             | Tricia McKinney                                              |
| Welsh National<br>Commissioning Advisory<br>Board Meeting                                                            | Lamb and Flag<br>Hotel, Llanwenarth,<br>Abergavenny   | 11/10/2005 | PICANet: Presentation of National<br>and Welsh Report                                                                                                                             | Gareth Parry                                                 |
| PICANet AGM                                                                                                          | Perinatal Institute,<br>Birmingham                    | 29/06/2006 | Presentation of the National Report                                                                                                                                               | PICANet Team                                                 |
| Pan Thames                                                                                                           | London                                                | 28/07/2006 | Pan Thames PICANet Report                                                                                                                                                         | Krish Thiru,                                                 |

| <b>Commissioners Meeting</b>                            |                                                                 |                  | 2004-2005                                                | Tricia McKinney                                                                                      |
|---------------------------------------------------------|-----------------------------------------------------------------|------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Paediatric Intensive Care<br>Society Scientific Meeting | Glasgow                                                         | 16 &<br>17/11/06 | PICU Health Informatics                                  | K Thiru, P<br>Ramnarayan, S<br>Rowe on behalf<br>of the pan<br>Thames Health<br>Informatics<br>Group |
| University of Leicester,                                | Department of<br>Health Sciences.<br>University of<br>Leicester | 14/03/2007       | The UK Paediatric Traumatic<br>Brain Injury Study        | Roger Parslow                                                                                        |
| Paediatric Intensive Care<br>Society Study Group        | Cambridge                                                       | 21 &<br>22/03/07 | PICU Health Informatics: Clinical<br>Information Systems | K Thiru, P<br>Ramnarayan, S<br>Rowe on behalf<br>of the pan<br>Thames Health<br>Informatics<br>Group |
| Pan Thames<br>Commissioners PbR<br>Roadmap              | ASIA House                                                      | 14/06/2007       | PICANet and the PCCMDS                                   | Roger Parslow                                                                                        |

# K.2 Publications

| Journal                                                                                           | Title                                                                                                                                                                                                                            | Authors                                                                                                                                                                                                      |  |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pediatrics (2004) <b>113</b> 1653-1657                                                            | Trends in the incidence of severe<br>retinopathy of prematurity in a<br>geographically defined population over a 10-<br>year period                                                                                              | Hameed B, Shyamanur K,<br>Kotecha S, Manktelow B,<br>Woodruff G, Draper ES & Field D                                                                                                                         |  |
| Archives of Disease in Childhood<br>(2005) <b>90</b> 380-387                                      | Neuropsychological and educational<br>problems at school age associated with<br>neonatal encephalopathy                                                                                                                          | Marlow N, Rose AS, Rands CE & Draper ES                                                                                                                                                                      |  |
| Archives of Disease in Childhood<br>(2005) <b>90</b> 1182-1187                                    | Epidemiology of traumatic brain injury in<br>children receiving intensive care in the UK                                                                                                                                         | Parslow RC, Morris KP, Tasker<br>RC, Forsyth RJ & Hawley C                                                                                                                                                   |  |
| British Medical Journal (2005) <b>330</b> 43<br>(1 January)                                       | Paediatric cardiac surgical mortality after<br>Bristol: details of risk adjustment tools were<br>not given (letter)                                                                                                              | Parry GJ, Draper ES & McKinney<br>P                                                                                                                                                                          |  |
| British Medical Journal (2005) <b>330</b><br>877-879 (16 April)                                   | A feasibility study of signed consent for the collection of patient identifiable information for a national paediatric clinical audit database                                                                                   | McKinney PA, Jones S, Parslow<br>R, Davey N, Darowski M,<br>Chaudhry B, Stack C, Parry G,<br>Draper ES for the PICANet<br>Consent Study Group                                                                |  |
| European Journal of Obstetrics,<br>Gynecology & Reproductive Biology<br>(2005) <b>118</b> 272-274 | Presentation of the European project<br>models of organising access to intensive<br>care for very preterm births in Europe<br>(MOSAIC) using European diversity to<br>explore models for the care of the very<br>preterm babies. | Zeitlin J, Papiernik E, Breart G,<br>Draper E & Kollee L                                                                                                                                                     |  |
| Prenatal Diagnosis (2005) <b>25</b> 286-291                                                       | Population based study of the outcome<br>following the antenatal diagnosis of cystic<br>hygroma                                                                                                                                  | Howart ES, Draper ES, Budd JLS,<br>Konje J, Kurinczuk JJ & Clarke M                                                                                                                                          |  |
| Emergency Medical Journal (2006) <b>23</b><br>519-522                                             | Emergency access to neurosurgery in the United Kingdom                                                                                                                                                                           | Tasker RC, Morris KP, Forsyth<br>RJ, Hawley CA, Parslow RC, on<br>behalf of the UK Paediatric Brain<br>Injury Study                                                                                          |  |
| Intensive Care Medicine (2006) <b>32</b> (9)<br>1458                                              | Organ donation in paediatric traumatic brain injury                                                                                                                                                                              | Morris KP, Tasker RC, Parslow<br>RC, Forsyth RJ, Hawley CA                                                                                                                                                   |  |
| Intensive Care Medicine (2006) <b>32</b> (10) 1606-1612                                           | Monitoring and management of intracranial<br>pressure complicating severe traumatic<br>brain injury in children                                                                                                                  | Morris KP, Forsyth RJ, Parslow<br>RC, Tasker RC, Hawley CA on<br>behalf of the UK Paediatric<br>Traumatic Brain Injury Study<br>Group and the Paediatric<br>Intensive Care Society Study<br>Group            |  |
| Lancet (2006) <b>367</b> 1080-85                                                                  | Outcome after neonatal continuous<br>negative-pressure ventilation: follow-up<br>assessment                                                                                                                                      | Telford K, Waters L, Vyas H,<br>Manktelow BN, Draper ES,<br>Marlow N                                                                                                                                         |  |
| Pediatrics (2006) <b>117</b> 733-742                                                              | Assessment and optimisation of mortality<br>prediction tools for admissions to paediatric<br>intensive care in the United Kingdom                                                                                                | Brady AR, Harrison D, Black S,<br>Jones S, Rowan K, Pearson G,<br>Ratcliffe J, Parry GJ; UK PICOS<br>Study Group                                                                                             |  |
| Archives of Disease in Childhood.<br>Fetal and Neonatal Edition (2007) <b>92</b><br>19-24         | Outcome following neonatal continuous negative pressure ventilation                                                                                                                                                              | Telford K, Waters L, Vyas H,<br>Manktelow BN, Draper ES,<br>Marlow N                                                                                                                                         |  |
| Paediatric Intensive Care Medicine<br>(2007) ( <i>In Press</i> )                                  | Prediction of raised intracranial pressure<br>complicating severe traumatic brain injury in<br>children: implications for trial design                                                                                           | Forsyth RJ, Parslow RC, Tasker<br>RC, Hawley CA, Morris KP. On<br>behalf of the UK Paediatric<br>Traumatic Brain Injury Study<br>Group and the Paediatric<br>Intensive Care Society Study<br>Group (PICS SG) |  |

# K.3 Abstracts

| Abstract                                                                                                                                           | Title                                                                                                                                                                                                      | Authors                                                                                              |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Health Protection Agency (HPA)<br>Annual Conference, 12-15 September<br>2005, Warwick (oral presentation)                                          | Mortality, deprivation and ethnicity of<br>critically ill children in England and Wales:<br>preliminary findings from the Paediatric<br>Intensive Care Audit Network (PICANet)                             | Parslow RC, Tasker RC, Chater<br>T, Davey N, Draper ES, Jones S,<br>Parry GJ & McKinney PA.          |  |  |
| European Society for Paediatric and<br>Neonatal Intensive Care (ESPNIC)<br>annual conference, 15-17 September<br>2005, Antwerp (oral presentation) | Mortality, deprivation and ethnicity of<br>critically ill children in England and Wales:<br>preliminary findings from the Paediatric<br>Intensive Care Audit Network (PICANet)                             | Parslow RC, Tasker RC, Chater<br>T, Davey N, Draper ES, Jones S,<br>Parry GJ, Thiru K & McKinney PA. |  |  |
| Developmental Medicine and Child<br>Neurology (2005) <b>47</b> (Suppl 101) 4                                                                       | Design of randomized controlled trials of the<br>management of raised intracranial pressure<br>in paediatric traumatic brain injury                                                                        | Forsyth RJ, Morris K, Parslow RC,<br>Hawley C & Tasker RC                                            |  |  |
| 5 <sup>th</sup> World Congress on Pediatric Critical<br>Care, 24-28 June 2007, Geneva,<br>Switzerland (oral presentation)                          | Infants admitted to paediatric intensive care<br>with acute respiratory failure in England and<br>Wales                                                                                                    | Parslow RC, McKinney PA,<br>Draper ES, O'Donnell R                                                   |  |  |
| 5 <sup>th</sup> World Congress on Pediatric Critical<br>Care, 24-28 June 2007, Geneva,<br>Switzerland (poster presentation)                        | Collecting national data for clinical audit:<br>The Paediatric Intensive Care Audit<br>Network in Great Britain                                                                                            | Parslow RC, McKinney PA,<br>Draper ES, Thiru K                                                       |  |  |
| 5 <sup>th</sup> World Congress on Pediatric Critical<br>Care, 24-28 June 2007, Geneva,<br>Switzerland (poster presentation)                        | Admission to PICU with severe bronchiolitis<br>and acute respiratory failure after preterm<br>birth is associated with a longer duration of<br>stay and a higher incidence of apnoeas but<br>not mortality | O'Donnell DR, Parslow RC,<br>McKinney PA, Draper ES                                                  |  |  |
| 5 <sup>th</sup> World Congress on Pediatric Critical<br>Care, 24-28 June 2007, Geneva,<br>Switzerland (poster presentation)                        | Severe bronchiolitis is associated with the<br>annual UK winter increase in PICU<br>admissions and prolonged stay compared<br>with other diagnoses                                                         | O'Donnell DR, Parslow RC,<br>McKinney PA, Draper ES                                                  |  |  |
| 5 <sup>th</sup> World Congress on Pediatric Critical<br>Care, 24-28 June 2007, Geneva,<br>Switzerland (poster presentation)                        | Hyperglycaemia and insulin therapy in UK paediatric intensive care units                                                                                                                                   | Nayak P, Morris KP, Parslow RC                                                                       |  |  |
| 5 <sup>th</sup> World Congress on Pediatric Critical<br>Care, 24-28 June 2007, Geneva,<br>Switzerland (oral presentation)                          | The effect of missing data on PIM-predicted SMR                                                                                                                                                            | Emsden S, Baines P, McClelland<br>T, Parslow RC                                                      |  |  |
| 5 <sup>th</sup> World Congress on Pediatric Critical<br>Care, 24-28 June 2007, Geneva,<br>Switzerland (poster presentation)                        | Clinical information system utilisation in<br>paediatric intensive care: A UK perspective                                                                                                                  | Ramnarayan P, Thiru K, Rowe S<br>on behalf of pan Thames Health<br>Informatics Group                 |  |  |
| The 15th Annual Public Health Forum,<br>Edinburgh International Conference<br>Centre, 28-29 March 2007, Edinburgh,<br>UK (poster presentation)     | Using Data to Inform Commissioning of<br>Paediatric Intensive Care                                                                                                                                         | Sidhu S, Rowe S & Thiru K                                                                            |  |  |

# APPENDIX L MEMBERSHIP OF THE PAEDIATRIC CRITICAL CARE EXPERT WORKING GROUP

| Chair                | Nick Griffin (Chair) | Consultant Paediatrician,                  |  |  |  |  |
|----------------------|----------------------|--------------------------------------------|--|--|--|--|
| Chair                | Nick Grinn (Chair)   |                                            |  |  |  |  |
| Ducie of Manager     | Les Hushes           | Northampton General Hospital               |  |  |  |  |
| Project Manager      | lan Hughes           |                                            |  |  |  |  |
| Clinical             | Kevin Morris         | Consultant Paediatric Intensivist,         |  |  |  |  |
| Representatives      |                      | Birmingham Children's Hospital             |  |  |  |  |
|                      | Pete Barry           | Consultant Paediatric Intensivist,         |  |  |  |  |
|                      |                      | University Hospitals of Leicester          |  |  |  |  |
|                      | Charles Stack        | Consultant Paediatric Intensivist,         |  |  |  |  |
|                      |                      | Sheffield Children's Hospital              |  |  |  |  |
|                      | Andy Darbyshire      | Nurse Consultant, Paediatric HDU,          |  |  |  |  |
|                      |                      | Alder Hey Hospital, Liverpool              |  |  |  |  |
|                      | William Booth        | Senior Nurse, Paediatric Intensive Care    |  |  |  |  |
|                      |                      | Unit, Bristol Royal Hospital for Children. |  |  |  |  |
|                      |                      | And                                        |  |  |  |  |
|                      |                      | Chair of the Royal College of Nursing      |  |  |  |  |
|                      |                      | Paediatric Intensive Care Nurses Forum     |  |  |  |  |
|                      | Ian Murdoch          | Clinical lead,                             |  |  |  |  |
|                      |                      | Guys Hospital, London                      |  |  |  |  |
|                      | Robert Yates         | Consultant Paediatric Intensivist,         |  |  |  |  |
|                      |                      | Manchester Children's Hospital             |  |  |  |  |
| PICANet              | Roger Parslow        | Senior Research Fellow,                    |  |  |  |  |
|                      |                      | PICANet                                    |  |  |  |  |
| Department of Health | Professor Stuart     | Department of Health, Medical Adviser,     |  |  |  |  |
|                      | Tanner               | Paediatrics & Child Health,                |  |  |  |  |
| Commissioning        | Stuart Rowe          | Pan Thames PICU Commissioning              |  |  |  |  |
| -                    |                      | Consortium                                 |  |  |  |  |
| Casemix              | Paul Smith           | Senior Casemix Consultant,                 |  |  |  |  |
|                      |                      | HSCIC.                                     |  |  |  |  |
| Costing              | Sujit Kooner         | Costing Consultant,                        |  |  |  |  |
| 5                    |                      | HSCIC.                                     |  |  |  |  |
| Finance              | Lee Bond             | Director of Finance,                       |  |  |  |  |
|                      |                      | Sheffield Children's Hospital              |  |  |  |  |
|                      |                      | · · · · · · · · · · · · · · · · · · ·      |  |  |  |  |
| Previous members:    | Andy Gill            | Senior Casemix Consultant,                 |  |  |  |  |
|                      |                      | IC                                         |  |  |  |  |
|                      | Lyvonne Tume         | Lecturer Practitioner,                     |  |  |  |  |
|                      |                      | Alder Hey Hospital, Liverpool              |  |  |  |  |
|                      |                      |                                            |  |  |  |  |

# APPENDIX M MAPPING OF INTERVENTIONS TO DIFFERENT HRG LEVELS

| HRG | Label                            | Criteria                                                                                                              |
|-----|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 7   | Intensive Care - ECMO/ECLS       | Extracorporeal membrane oxygenation (ECMO) / Extracorporeal Life Support (ECLS) including VAD, or aortic balloon pump |
| 6   | Intensive Care Advanced Enhanced | Invasive Mechanical Ventilation (IMV) or Advanced Respiratory Support (ARS)<br><b>Plus</b> one or more of:            |
|     |                                  | Burns >79% BSA                                                                                                        |
|     |                                  | >80 mls/kg volume boluses                                                                                             |
|     |                                  | OR                                                                                                                    |
| _   |                                  | HRG 5 + Isolation                                                                                                     |
| 5   | Intensive Care Advanced          | Invasive Mechanical Ventilation (IMV) or Advanced Respiratory Support (ARS)<br><b>Plus</b> one or more of:            |
|     |                                  | Haemofiltration                                                                                                       |
|     |                                  | Haemodialysis                                                                                                         |
|     |                                  | Peritoneal dialysis                                                                                                   |
|     |                                  | Burns 50-79% BSA                                                                                                      |
|     |                                  | Extracorporeal Liver Support (MARS)                                                                                   |
|     |                                  | Exchange transfusion                                                                                                  |
|     |                                  | iNO                                                                                                                   |
|     |                                  | Surfactant                                                                                                            |
|     |                                  | Plasmafiltration                                                                                                      |
|     |                                  | OR                                                                                                                    |
|     |                                  | HRG 4 + Isolation                                                                                                     |
| 4   | Intensive Care Basic Enhanced    | Invasive Mechanical Ventilation (IMV)                                                                                 |
|     |                                  | Plus one or more of:                                                                                                  |
|     |                                  | Vasoactive infusion                                                                                                   |
|     |                                  | ICP monitoring                                                                                                        |
|     |                                  | Burns 20-49% BSA                                                                                                      |
|     |                                  | Intravenous thrombosis                                                                                                |
|     |                                  | CPR in last 24 hrs                                                                                                    |
|     |                                  | OR                                                                                                                    |

| HRG | Label                    | Criteria                                                                          |
|-----|--------------------------|-----------------------------------------------------------------------------------|
|     | ·                        | Advanced Respiratory Support (ARS) (Jet ventilation or High Frequency Oscillatory |
|     |                          | Ventilation (HFOV))                                                               |
|     |                          | OR                                                                                |
|     |                          | HRG 3 + Isolation                                                                 |
| 3   | Intensive Care Basic     | Invasive Mechanical Ventilation (IMV)                                             |
|     |                          | OR                                                                                |
|     |                          | Non invasive ventilation / CPAP                                                   |
|     |                          | Plus one or more of:                                                              |
|     |                          | Burns >79% BSA                                                                    |
|     |                          | >80 mls/kg volume boluses                                                         |
|     |                          | Haemofiltration                                                                   |
|     |                          | Haemodialysis                                                                     |
|     |                          | Peritoneal dialysis                                                               |
|     |                          | Burns 50-79% BSA                                                                  |
|     |                          | Extracorporeal Liver Support (MARS)                                               |
|     |                          | Exchange transfusion                                                              |
|     |                          | iNO                                                                               |
|     |                          | Surfactant                                                                        |
|     |                          | Plasmafiltration                                                                  |
|     |                          | Vasoactive infusion                                                               |
|     |                          | ICP monitoring                                                                    |
|     |                          | Burns 20-49% BSA                                                                  |
|     |                          | Intravenous thrombolysis                                                          |
|     |                          | CPR in last 24 hrs                                                                |
|     |                          | OR                                                                                |
|     |                          | HRG 2 + Isolation                                                                 |
| 2   | High Dependency Advanced | Non invasive ventilation / CPAP                                                   |
|     |                          | Arterial monitoring                                                               |
|     |                          | Haemofiltration                                                                   |
|     |                          | "Acute" haemodialysis                                                             |
|     |                          | "Acute" Peritoneal dialysis                                                       |
|     |                          | Plasmafiltration                                                                  |

| HRG | Label           | Criteria                                                                     |
|-----|-----------------|------------------------------------------------------------------------------|
|     |                 | Exchange transfusion                                                         |
|     |                 | Temporary pacing                                                             |
|     |                 | Vasoactive infusion                                                          |
|     |                 | Intravenous thrombolysis (tPA, streptokinase)                                |
|     |                 | ICP monitoring                                                               |
|     |                 | Intraventricular catheter / external ventricular drain                       |
|     |                 | CPR in last 24 hrs                                                           |
|     |                 | iNO                                                                          |
|     |                 | Surfactant                                                                   |
|     |                 | Extracorporeal Liver Support (MARS)                                          |
|     |                 | >80 mls/kg volume boluses                                                    |
|     |                 | Apnoea Requiring Intervention in past 24 hrs (>3 stimulation or bag-mask)    |
|     |                 | OR                                                                           |
|     |                 | HRG 1 + Isolation                                                            |
| 1   | High Dependency | CVP monitoring                                                               |
|     |                 | Continuous ECG monitoring                                                    |
|     |                 | Oxygen Therapy plus Continuous Pulse Oximetry                                |
|     |                 | Nasopharyngeal airway                                                        |
|     |                 | Care of tracheostomy                                                         |
|     |                 | Upper airway obstruction requiring nebulised adrenaline                      |
|     |                 | Severe Asthma requiring intravenous bronchodilator, or continuous nebulisers |
|     |                 | DKA requiring continuous insulin infusion                                    |

# APPENDIX N PCCMDS: HIGH COST DRUGS WHICH ARE UNBUNDLED

| High Cost Drug               | OPCS<br>4.3<br>Code | OPCS 4.3 Code Label                                    | HRG            | HRG Label                                                    |
|------------------------------|---------------------|--------------------------------------------------------|----------------|--------------------------------------------------------------|
| Sildenafil                   | X821                | Pulmonary hypertension<br>drugs Band 1                 | XD01Z          | Primary Pulmonary<br>Hypertension drugs Band 1               |
| Bosentan                     | X822                | Pulmonary hypertension                                 | XD02Z          | Primary Pulmonary                                            |
| Dosenian                     | 7022                | drugs Band 2                                           | XD02Z          | Hypertension drugs Band 2                                    |
| lloprost                     | X823                | Pulmonary hypertension                                 | XD03Z          | Primary Pulmonary                                            |
| noprost                      | 7023                | drugs Band 3                                           | XD032          | Hypertension drugs Band 3                                    |
| Epoprostenol                 | X824                | Pulmonary hypertension                                 | XD04Z          | Primary Pulmonary                                            |
|                              |                     | drugs Band 4                                           |                | Hypertension drugs Band 4                                    |
| Factor VIIa<br>(recombinant) | X831                | Blood products Band 1                                  | XD05Z          | Blood products Band 1                                        |
| Recombinant                  | X832                | Blood products Band 2                                  | XD06Z          | Blood products Band 2                                        |
| activated protein            | 7032                | Blood products Band 2                                  | XD002          | Blood products Band 2                                        |
| Alteplase                    | X833                | Fibrinolytic drugs Band 1                              | XD07Z          | Fibrinolytic drugs Band 1                                    |
| Reteplase                    | X833                | Fibrinolytic drugs Band 1                              | XD07Z          | Fibrinolytic drugs Band 1                                    |
| Tenecteplase                 | X833                | Fibrinolytic drugs Band 1                              | XD07Z          | Fibrinolytic drugs Band 1                                    |
| Nitric oxide                 | X841                | Medical gases Band 1                                   | XD07Z          | Medical gases Band 1                                         |
| Botulinum toxin              | X851                | Torsion dystonias and other                            | XD08Z<br>XD09Z | Torsion dystonias and other                                  |
|                              | 7031                | involuntary Band 1                                     | XD092          | involuntary movements drugs<br>Band 1                        |
| Riluzole                     | X852                | Amyotrophic lateral sclerosis drugs Band 1             | XD10Z          | Amyotrophic lateral sclerosis<br>drugs Band 1                |
| Amphotericin                 | X861                | Anti-fungal drugs Band 1                               | XD11Z          | Anti fungal drugs Band 1                                     |
| liposomal                    |                     |                                                        | , (B 1 1 E     | , ini rangai alago Dana i                                    |
| Caspofungin                  | X861                | Anti-fungal drugs Band 1                               | XD11Z          | Anti-fungal drugs Band 1                                     |
| Flucytosine                  | X861                | Anti-fungal drugs Band 1                               | XD11Z          | Anti-fungal drugs Band 1                                     |
| Voriconazole                 | X862                | Anti-fungal drugs Band 2                               | XD12Z          | Anti-fungal drugs Band 2                                     |
| Adefovir                     | X863                | Hepatitis B treatment drugs<br>Band 1                  | XD13Z          | Hepatitis B treatment drugs<br>Band 1                        |
| Interferon alfa              | X863                | Hepatitis B treatment drugs<br>Band 1                  | XD13Z          | Hepatitis B treatment drugs<br>Band 1                        |
| Peginterferon                | X864                | Respiratory syncytial virus                            | XD14Z          | Respiratory syncytial virus                                  |
| alpha                        |                     | treatment and Hepatitis C                              |                | treatment and Hepatitis C                                    |
| D'ha lala                    | Vood                | treatment drugs Band 1                                 | VD447          | treatment drugs Band 1                                       |
| Ribavirin                    | X864                | Respiratory syncytial virus treatment and Hepatitis C  | XD14Z          | Respiratory syncytial virus treatment and Hepatitis C        |
|                              |                     | treatment drugs Band 1                                 |                | treatment drugs Band 1                                       |
| Palivizumab                  | X865                | Respiratory syncytial virus<br>prevention drugs Band 1 | XD15Z          | Respiratory syncytial virus<br>virus prevention drugs Band 1 |
| Pegvisomant                  | X871                | Growth hormone receptor                                | XD16Z          | Growth hormone receptor                                      |
| Ŭ                            |                     | antagonist drugs Band 1                                |                | antagonist drugs Band 1                                      |
| Somatropin                   | X872                | Growth hormone analogue drugs Band 1                   | XD17Z          | Growth hormone analogue drugs Band 1                         |
| Teriparatide                 | X873                | Bone metabolism drugs Band                             | XD18Z          | Bone metabolism drugs Band                                   |
|                              | Vood                | I<br>Monoolong onthe disc Day 14                       | VD407          | 1<br>Managlangl antibadian Band 1                            |
| Alemtuzumab                  | X891                | Monoclonal antibodies Band 1                           |                | Monoclonal antibodies Band 1                                 |
| Rituximab                    | X892                | Monoclonal antibodies Band 2                           | XD20Z          | Monoclonal antibodies Band 2                                 |
| Beta interferon              | X893                | Immunomodulating drugs<br>Band 1                       | XD21Z          | Immunomodulating drugs<br>Band 1                             |
| Glatiramer                   | X893                | Immunomodulating drugs<br>Band 1                       | XD21Z          | Immunomodulating drugs<br>Band 1                             |
| Lanreotide                   | X894                | Somatostatin analogues Band                            | XD22Z          | Somatostatin analogues Band                                  |
| Octreotide                   | X894                | Somatostatin analogues Band                            | XD22Z          | Somatostatin analogues Band                                  |
| Darbopoetin alfa             | X901                | Hypoplastic haemolytic and                             | XD23Z          | Hypoplastic haemolytic and                                   |

|                                    |       | renal anaemia drugs Band 1                                           |       | renal anaemia drugs Band 1         |
|------------------------------------|-------|----------------------------------------------------------------------|-------|------------------------------------|
| Epoetin alfa and                   | X901  | Hypoplastic haemolytic and                                           | XD23Z | Hypoplastic haemolytic and         |
| beta                               | 7.001 | renal anaemia drugs Band 1                                           | AB202 | renal anaemia drugs Band 1         |
| Antilymphocyte                     | X902  | Hypoplastic haemolytic and                                           | XD24Z | Hypoplastic haemolytic and         |
| globulin                           |       | renal anaemia drugs Band 2                                           |       | renal anaemia drugs Band 2         |
| Filgrastim                         | X903  | Neutropenia drugs Band 1                                             | XD25Z | Neutropenia drugs Band 1           |
| Lenograstim                        | X903  | Neutropenia drugs Band 1                                             | XD25Z | Neutropenia drugs Band 1           |
| Pegfilgrastim                      | X903  | Neutropenia drugs Band 1                                             | XD25Z | Neutropenia drugs Band 1           |
| Total parenteral nutrition         | X904  | Intravenous nutrition Band 1                                         | XD26Z | Intravenous nutrition Band 1       |
| Cysteamine<br>(mercaptamine)       | X911  | Metabolic disorder drugs<br>Band 1                                   | XD27Z | Metabolic disorder drugs<br>Band 1 |
| Sodium<br>phenylbutyrate           | X912  | Metabolic disorder drugs<br>Band 2                                   | XD28Z | Metabolic disorder drugs<br>Band 2 |
| Miglustat                          | X913  | Metabolic disorder drugs<br>Band 3                                   | XD29Z | Metabolic disorder drugs<br>Band 3 |
| Agalsidase beta<br>(galactosidase) | X914  | Metabolic disorder drugs<br>Band 4                                   | XD30Z | Metabolic disorder drugs<br>Band 4 |
| Imiglucerase                       | X914  | Metabolic disorder drugs<br>Band 4                                   | XD30Z | Metabolic disorder drugs<br>Band 4 |
| Laronidase                         | X914  | Metabolic disorder drugs<br>Band 4                                   | XD30Z | Metabolic disorder drugs<br>Band 4 |
| Adalimumab                         | X921  | Cytokine inhibitor drugs Band<br>1                                   | XD31Z | Cytokine inhibitor drugs Band<br>1 |
| Anakinra                           | X921  | Cytokine inhibitor drugs Band<br>1                                   | XD31Z | Cytokine inhibitor drugs Band<br>1 |
| Etanercept                         | X921  | Cytokine inhibitor drugs Band<br>1                                   | XD31Z | Cytokine inhibitor drugs Band<br>1 |
| Infliximab                         | X921  | Cytokine inhibitor drugs Band                                        | XD31Z | Cytokine inhibitor drugs Band<br>1 |
| Rasburicase                        | X922  | Hyperuricaemia drugs Band 1                                          | XD32Z | Hyperuricaemia drugs Band 1        |
| Efalizumab                         | X951  | Immune response drugs Band                                           | XD33Z | Immune response drugs Banc<br>1    |
| Flebogamma                         | X961  | Immunoglobulins Band 1                                               | XD34Z | Immunoglobulins Band 1             |
| Gammagard                          | X961  | Immunoglobulins Band 1                                               | XD34Z | Immunoglobulins Band 1             |
| Octagam                            | X961  | Immunoglobulins Band 1                                               | XD34Z | Immunoglobulins Band 1             |
| Sandoglobulin                      | X961  | Immunoglobulins Band 1                                               | XD34Z | Immunoglobulins Band 1             |
| Subcuvia                           | X961  | Immunoglobulins Band 1                                               | XD34Z | Immunoglobulins Band 1             |
| Subgam                             | X961  | Immunoglobulins Band 1                                               | XD34Z | Immunoglobulins Band 1             |
| Vigam                              | X961  | Immunoglobulins Band 1                                               | XD34Z | Immunoglobulins Band 1             |
|                                    | X818  | Other specified high cost                                            | XD35Z | Other specified high cost          |
|                                    |       | gastrointestinal drugs                                               |       | drugs                              |
|                                    | X828  | Other specified high cost hypertension drugs                         | XD35Z | Other specified high cost<br>drugs |
|                                    | X838  | Other specified high cost other cardiovascular drugs                 | XD35Z | Other specified high cost<br>drugs |
|                                    | X848  | Other specified high cost<br>respiratory drugs                       | XD35Z | Other specified high cost<br>drugs |
|                                    | X858  | Other specified high cost<br>neurology drugs                         | XD35Z | Other specified high cost drugs    |
|                                    | X868  | Other specified high cost anti-<br>infective drugs                   | XD35Z | Other specified high cost drugs    |
|                                    | X878  | Other specified high cost<br>endocrinology drugs                     | XD35Z | Other specified high cost drugs    |
|                                    | X888  | Other specified high cost<br>reproductive and urinary tract<br>drugs | XD35Z | Other specified high cost drugs    |
|                                    | X898  | Other specified high cost immunosuppressant drugs                    | XD35Z | Other specified high cost<br>drugs |
|                                    | X908  | Other specified high cost haematology and nutrition                  | XD35Z | Other specified high cost drugs    |

|  |       | drugs                                     |        |                                 |
|--|-------|-------------------------------------------|--------|---------------------------------|
|  | X918  | Other specified high cost metabolic drugs | XD35Z  | Other specified high cost drugs |
|  | X928  | Other specified high cost                 | XD35Z  | Other specified high cost       |
|  | 7.520 | musculoskeletal drugs                     | AD002  | drugs                           |
|  | X938  | Other specified high cost                 | XD35Z  | Other specified high cost       |
|  | 7330  | ophthalmology drugs                       | AD002  | drugs                           |
|  | X948  | Other specified high cost ear,            | XD35Z  | Other specified high cost       |
|  | 70-0  | nose and throat drugs                     | NDOOL  | drugs                           |
|  | X958  | Other specified high cost                 | XD35Z  | Other specified high cost       |
|  | 7330  | dermatology drugs                         | AD002  | drugs                           |
|  | X968  | Other specified high cost                 | XD35Z  | Other specified high cost       |
|  | 7300  | immunology drugs                          | AD002  | drugs                           |
|  | X978  | Other specified high cost                 | XD35Z  | Other specified high cost       |
|  | 7.570 | anaesthesia drugs                         | AD002  | drugs                           |
|  | X819  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  | 7013  | gastrointestinal drugs                    | AD002  | Unspecified high cost drugs     |
|  | X829  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  | 7025  | hypertension drugs                        | AD002  | Unspecified high cost drugs     |
|  | X839  | Unspecified high cost other               | XD36Z  | Unspecified high cost drugs     |
|  | 7000  | cardiovascular drugs                      | ADOUL  | enspeomed high cost drugs       |
|  | X849  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  | 7040  | respiratory drugs                         | ADOUL  | enspeomed high cost drugs       |
|  | X859  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  | 7000  | neurology drugs                           | ADOUL  | enspeomed high cost drugs       |
|  | X869  | Unspecified high cost anti-               | XD36Z  | Unspecified high cost drugs     |
|  | 1000  | infective drugs                           | ABOOL  | enopeenied high coet druge      |
|  | X879  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  | ,     | endocrinology drugs                       | 7.200L | enopeenied night eest druge     |
|  | X889  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  | ,     | reproductive and urinary tract            | 7.200L | enopeenied night coot arage     |
|  |       | drugs                                     |        |                                 |
|  | X899  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  |       | immunosuppressant drugs                   |        |                                 |
|  | X909  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  |       | haematology and nutrition                 |        |                                 |
|  |       | drugs                                     |        |                                 |
|  | X919  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  |       | metabolic drugs                           |        |                                 |
|  | X929  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  |       | musculoskeletal drugs                     |        |                                 |
|  | X939  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  |       | ophthalmology drugs                       |        |                                 |
|  | X949  | Unspecified high cost ear,                | XD36Z  | Unspecified high cost drugs     |
|  |       | nose and throat drugs                     |        |                                 |
|  | X959  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  |       | dermatology drugs                         |        | , 3                             |
|  | X969  | Unspecified high cost                     | XD36Z  | Unspecified high cost drugs     |
|  |       |                                           |        |                                 |
|  |       | immunology drugs                          |        |                                 |
|  | X979  | immunology drugs<br>Unspecified high cost | XD36Z  | Unspecified high cost drugs     |

## APPENDIX O CHANGES TO THE STRUCTURE OF NHS PRIMARY CARE IN ENGLAND ON 1ST OCTOBER 2006

On 1st October 2006, the number of primary care organisations in England was reduced from 303 to 152 (including 148 primary care trusts and 4 care trusts). On 1st July 2006 the number of strategic health authorities in England was reduced from 28 to 10.

| New SHA        | Old SHA                           | New PCO                       | Old PCO                              |
|----------------|-----------------------------------|-------------------------------|--------------------------------------|
|                |                                   | 5D7 NEWCASTLE PCT             | 5D7 NEWCASTLE PCT                    |
|                |                                   | 5D8 NORTH TYNESIDE PCT        | 5D8 NORTH TYNESIDE PCT               |
|                | Q09 NORTHUMBERLAND, TYNE & WEAR   | 5KF GATESHEAD PCT             | 5KF GATESHEAD PCT                    |
|                | QUS NORTHOMBERLAND, ITTNE & WEAR  | 5KG SOUTH TYNESIDE PCT        | 5KG SOUTH TYNESIDE PCT               |
|                |                                   | 5KL SUNDERLAND TEACHING PCT   | 5KL SUNDERLAND TEACHING PCT          |
|                |                                   | TAC NORTHUMBERLAND CARE TRUST | TAC NORTHUMBERLAND CARE TRUST        |
|                |                                   | 5D9 HARTLEPOOL PCT            | 5D9 HARTLEPOOL PCT                   |
|                |                                   | 5E1 NORTH TEES PCT            | 5E1 NORTH TEES PCT                   |
| Q30 NORTH EAST |                                   | 5J9 DARLINGTON PCT            | 5J9 DARLINGTON PCT                   |
|                |                                   |                               | 5J8 DURHAM DALES PCT                 |
|                |                                   |                               | 5KA DERWENTSIDE PCT                  |
|                | Q10 COUNTY DURHAM AND TEES VALLEY | 5ND COUNTY DURHAM PCT         | 5KC DURHAM AND CHESTER-LE-STREET PCT |
|                |                                   |                               | 5KD EASINGTON PCT                    |
|                |                                   |                               | 5KE SEDGEFIELD PCT                   |
|                |                                   | 5KM MIDDLESBROUGH PCT         |                                      |
|                |                                   |                               | 5KM MIDDLESBROUGH PCT 1              |
|                |                                   | 5QR REDCAR AND CLEVELAND PCT  | 5KN LANGBAURGH PCT                   |

1 Middlesbrough County remains as 5KM

| New SHA        | Old SHA                    | New PCO                                 | Old PCO                                                   |
|----------------|----------------------------|-----------------------------------------|-----------------------------------------------------------|
|                |                            | 5CC BLACKBURN WITH DARWEN PCT           | 5CC BLACKBURN WITH DARWEN PCT                             |
| 1              |                            | 5HP BLACKPOOL PCT                       | 5HP BLACKPOOL PCT                                         |
| 1              |                            |                                         | 5D4 CARLISLE AND DISTRICT PCT                             |
| 1              |                            |                                         | 5D5 EDEN VALLEY PCT                                       |
|                |                            | 5NE CUMBRIA PCT                         | 5D6 WEST CUMBRIA PCT                                      |
|                |                            |                                         | 5DD MORECAMBE BAY PCT <sup>2</sup>                        |
|                | Q13 CUMBRIA AND LANCASHIRE |                                         | 5HE FYLDE PCT                                             |
|                |                            |                                         | 5HF WYRE PCT                                              |
|                |                            |                                         | 5F2 CHORLEY AND SOUTH RIBBLE PCT                          |
|                |                            | 5NG CENTRAL LANCASHIRE PCT              | 5F3 WEST LANCASHIRE PCT                                   |
|                |                            |                                         | 5HD PRESTON PCT                                           |
|                |                            |                                         | 5G7 HYNDBURN AND RIBBLE VALLEY PCT                        |
|                |                            | 5NH EAST LANCASHIRE TEACHING PCT        | 5G8 BURNLEY, PENDLE AND ROSSENDALE PCT                    |
|                |                            | 5F5 SALFORD PCT                         | 568 BURNLEY, PENDLE AND ROSSENDALE PCT<br>5F5 SALFORD PCT |
|                |                            | 5F7 STOCKPORT PCT                       |                                                           |
|                |                            |                                         | 5F7 STOCKPORT PCT<br>5HG ASHTON, LEIGH AND WIGAN PCT      |
|                |                            | 5HG ASHTON, LEIGH AND WIGAN PCT         |                                                           |
|                |                            | 5HQ BOLTON PCT                          | 5HQ BOLTON PCT                                            |
|                |                            | 5J5 OLDHAM PCT                          | 5J5 OLDHAM PCT                                            |
|                |                            | 5JX BURY PCT                            | 5JX BURY PCT                                              |
| ON NORTH WEAT  | Q14 GREATER MANCHESTER     | 5LH TAMESIDE AND GLOSSOP PCT            | 5LH TAMESIDE AND GLOSSOP PCT 3                            |
| Q31 NORTH WEST |                            | 5NQ HEYWOOD, MIDDLETON AND ROCHDALE PCT | 5F4 HEYWOOD AND MIDDLETON PCT                             |
|                |                            |                                         | 5JY ROCHDALE PCT                                          |
|                |                            | 5NR TRAFFORD PCT                        | 5CX TRAFFORD SOUTH PCT                                    |
|                |                            |                                         | 5F6 TRAFFORD NORTH PCT                                    |
|                |                            |                                         | 5AA SOUTH MANCHESTER PCT                                  |
|                |                            | 5NT MANCHESTER PCT                      | 5CL CENTRAL MANCHESTER PCT                                |
|                |                            |                                         | 5CR NORTH MANCHESTER PCT                                  |
|                |                            | 5J2 WARRINGTON PCT                      | 5J2 WARRINGTON PCT                                        |
|                |                            | 5J4 KNOWSLEY PCT                        | 5J4 KNOWSLEY PCT                                          |
|                |                            | 5NJ SEFTON PCT                          | 5F9 SOUTHPORT AND FORMBY PCT                              |
|                |                            |                                         | 5M5 SOUTH SEFTON PCT                                      |
|                |                            | 5NK WIRRAL PCT                          | 5F8 BEBINGTON AND WEST WIRRAL PCT                         |
|                |                            | on the minute i of                      | 5H2 BIRKENHEAD AND WALLASEY PCT                           |
|                |                            |                                         | 5G9 NORTH LIVERPOOL PCT                                   |
|                | Q15 CHESHIRE & MERSEYSIDE  | 5NL LIVERPOOL PCT                       | 5HA CENTRAL LIVERPOOL PCT                                 |
|                |                            |                                         | 5HC SOUTH LIVERPOOL PCT                                   |
|                |                            | 5NM HALTON AND ST HELENS PCT            | 5J1 HALTON PCT                                            |
|                |                            | SINU HALION AND ST HELENS POT           | 5J3 ST HELENS PCT                                         |
|                |                            |                                         | 5H3 CHESHIRE WEST PCT                                     |
|                |                            | 5NN WESTERN CHESHIRE PCT                | 5H6 ELLESMERE PORT AND NESTON PCT                         |
|                |                            |                                         | 5H4 CENTRAL CHESHIRE PCT                                  |
|                |                            | 5NP CENTRAL AND EASTERN CHESHIRE PCT    | 5H5 EASTERN CHESHIRE PCT                                  |

2 South Lakeland became part of Cumbria PCT while Lancaster became part of North Lancashire PCT

3 Tameside and Glossop PCT reports to North West SHA but part of the PCT falls within East Midlands SHA

|     | New SHA                  |     | Old SHA                                            |                                  | New PCO                             |                                          | Old PCO                       |
|-----|--------------------------|-----|----------------------------------------------------|----------------------------------|-------------------------------------|------------------------------------------|-------------------------------|
|     |                          |     |                                                    | 5AN                              | NORTH EAST LINCOLNSHIRE PCT         | 5AN                                      | NORTH EAST LINCOLNSHIRE PCT   |
|     |                          |     |                                                    | 5EF                              | NORTH LINCOLNSHIRE PCT              | 5EF                                      | NORTH LINCOLNSHIRE PCT        |
|     |                          |     | NORTH AND EAST YORKSHIRE AND NORTHERN LINCOLNSHIRE | 5NV NORTH YORKSHIRE AND YORK PCT | 5E2                                 | SELBY AND YORK PCT                       |                               |
|     |                          |     |                                                    |                                  | 5KH                                 | HAMBLETON AND RICHMONDSHIRE PCT          |                               |
|     |                          | 044 |                                                    |                                  | 5K.                                 | CRAVEN, HARROGATE AND RURAL DISTRICT PCT |                               |
|     |                          | QTI | NORTH AND EAST YORKSHIRE AND NORTHERN LINCOLNSHIRE |                                  | 5KK                                 | SCARBOROUGH, WHITBY AND RYEDALE PCT      |                               |
|     |                          |     |                                                    | ENIM                             | EAST RIDING OF YORKSHIRE PCT        | 5E3                                      | EAST YORKSHIRE PCT            |
|     |                          |     |                                                    | SINVV                            | EAST RIDING OF TORRSHIRE FOT        | 5E4                                      | YORKSHIRE WOLDS AND COAST PCT |
|     |                          |     |                                                    | 5NIX                             | HULL TEACHING PCT                   | 5E5                                      | EASTERN HULL PCT              |
|     |                          |     |                                                    | JINA                             |                                     | 5E6                                      | WEST HULL PCT                 |
| 1   |                          |     |                                                    | 5J6                              | CALDERDALE PCT                      | 5J6                                      | CALDERDALE PCT                |
|     |                          |     |                                                    |                                  |                                     | 5HH                                      | LEEDS WEST PCT                |
|     |                          |     |                                                    |                                  |                                     | 5HJ                                      | LEEDS NORTH EAST PCT          |
|     |                          |     |                                                    | 5N1 LEEDS PCT                    | 5HK                                 | EAST LEEDS PCT                           |                               |
|     |                          |     |                                                    |                                  | 5HL                                 | SOUTH LEEDS PCT                          |                               |
|     |                          |     |                                                    |                                  | 5HM                                 | LEEDS NORTH WEST PCT                     |                               |
| 032 | YORKSHIRE AND THE HUMBER |     |                                                    | 5N2 KIRKLEES PCT                 | 5J7                                 | NORTH KIRKLEES PCT                       |                               |
| QUZ | TORROTIRE AND THE HOMBER | Q12 | WEST YORKSHIRE                                     |                                  | 5LJ                                 | HUDDERSFIELD CENTRAL PCT                 |                               |
|     |                          |     |                                                    |                                  | 5LK                                 | SOUTH HUDDERSFIELD PCT                   |                               |
|     |                          |     |                                                    | 5N3                              | WAKEFIELD DISTRICT PCT              | 5E7                                      | EASTERN WAKEFIELD PCT         |
|     |                          |     |                                                    | SN3 WAREFIELD DISTRICT PCT       | 5E8                                 | WAKEFIELD WEST PCT                       |                               |
|     |                          |     |                                                    |                                  |                                     | 5AW                                      | AIREDALE PCT                  |
|     |                          |     |                                                    |                                  | BRADFORD AND AIREDALE TEACHING PCT  | 5CF                                      | BRADFORD CITY TEACHING PCT    |
|     |                          |     |                                                    | 5111                             | BRADI ORD AND AIREDALE TEACHING FOT | 5CG                                      | BRADFORD SOUTH AND WEST PCT   |
|     |                          |     |                                                    |                                  |                                     | 5CH                                      | NORTH BRADFORD PCT            |
|     |                          |     |                                                    |                                  | ROTHERHAM PCT                       | 5H8                                      | ROTHERHAM PCT                 |
|     |                          |     |                                                    | 5JE                              | BARNSLEY PCT                        | 5JE                                      | BARNSLEY PCT                  |
|     |                          |     |                                                    |                                  |                                     |                                          | NORTH SHEFFIELD PCT           |
|     |                          |     |                                                    | 5N4                              | SHEFFIELD PCT                       | 5EN                                      | SHEFFIELD WEST PCT            |
|     |                          | Q23 | SOUTH YORKSHIRE                                    | 5114                             |                                     | 5EP                                      | SHEFFIELD SOUTH WEST PCT      |
|     |                          |     |                                                    |                                  |                                     | 5EQ                                      | SOUTH EAST SHEFFIELD PCT      |
|     |                          |     |                                                    |                                  |                                     | 5CK                                      | DONCASTER CENTRAL PCT         |
|     |                          |     |                                                    | 5N5                              | DONCASTER PCT                       | 5EK                                      | DONCASTER EAST PCT            |
| l.  |                          |     |                                                    |                                  |                                     | 5EL                                      | DONCASTER WEST PCT            |

| New SHA           |     | Old SHA                                      |                                         | New PCO                               |                                      | Old PCO                                     |
|-------------------|-----|----------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------------|
|                   | Q16 | THAMES VALLEY                                | 5PD                                     | NORTHAMPTONSHIRE TEACHING PCT         | 5DV                                  | CHERWELL VALE PCT <sup>4</sup>              |
|                   |     |                                              | 5EM                                     | NOTTINGHAM CITY PCT                   | 5EM                                  | NOTTINGHAM CITY PCT                         |
|                   |     |                                              | 5ET                                     | BASSETLAW PCT                         | 5ET                                  | BASSETLAW PCT                               |
|                   |     |                                              |                                         | 5EA                                   | CHESTERFIELD PCT                     |                                             |
|                   |     |                                              |                                         |                                       | 5ED                                  | AMBER VALLEY PCT                            |
|                   |     |                                              | 5N6                                     | DERBYSHIRE COUNTY PCT                 | 5EG                                  | NORTH EASTERN DERBYSHIRE PCT                |
|                   |     |                                              | 5140                                    |                                       | 5ER                                  | EREWASH PCT                                 |
|                   |     |                                              |                                         |                                       | 5H7                                  | DERBYSHIRE DALES AND SOUTH DERBYSHIRE PCT   |
|                   |     |                                              |                                         |                                       | 5HN                                  | HIGH PEAK AND DALES PCT                     |
|                   |     |                                              |                                         |                                       | 5AL                                  | CENTRAL DERBY PCT                           |
|                   | 02/ | TRENT                                        | 5N7                                     | DERBY CITY PCT                        | 5ED                                  | AMBER VALLEY PCT                            |
|                   | Q24 |                                              |                                         |                                       | 5EX                                  | GREATER DERBY PCT                           |
|                   |     |                                              |                                         |                                       | 5AM                                  | MANSFIELD DISTRICT PCT                      |
|                   |     |                                              |                                         |                                       | 5AP                                  | NEWARK AND SHERWOOD PCT                     |
| Q33 EAST MIDLANDS |     |                                              | 5N8 NOTTINGHAMSHIRE COUNTY TEACHING PCT | 5EC                                   | GEDLING PCT                          |                                             |
| Q35 EACT MIDEANDO |     |                                              |                                         | 5EV                                   | BROXTOWE AND HUCKNALL PCT            |                                             |
|                   |     |                                              |                                         | 5FA                                   | ASHFIELD PCT                         |                                             |
|                   |     |                                              |                                         |                                       | 5FC                                  | RUSHCLIFFE PCT                              |
|                   |     |                                              |                                         |                                       | 5D2                                  | WEST LINCOLNSHIRE PCT                       |
|                   |     |                                              | 5N9 LINCOLNSHIRE TEACHING PCT 5         | 5D3                                   | LINCOLNSHIRE SOUTH WEST TEACHING PCT |                                             |
|                   |     |                                              |                                         |                                       | 5H9                                  | EAST LINCOLNSHIRE PCT                       |
|                   |     |                                              |                                         |                                       | 5EH                                  | MELTON, RUTLAND AND HARBOROUGH PCT          |
|                   |     |                                              | 5PA                                     | LEICESTERSHIRE COUNTY AND RUTLAND PCT | 5JA                                  | HINCKLEY AND BOSWORTH PCT                   |
|                   |     |                                              | 0174                                    |                                       | 5JC                                  | CHARNWOOD AND NORTH WEST LEICESTERSHIRE PCT |
|                   |     |                                              |                                         |                                       | 5JD                                  | SOUTH LEICESTERSHIRE PCT                    |
|                   | Q25 | LEICESTERSHIRE, NORTHAMPTONSHIRE AND RUTLAND | 5PC                                     | LEICESTER CITY PCT                    |                                      | LEICESTER CITY WEST PCT                     |
|                   |     |                                              | 010                                     |                                       | 5EY                                  | EASTERN LEICESTER PCT                       |
|                   |     |                                              |                                         |                                       | 5AC                                  | DAVENTRY AND SOUTH NORTHAMPTONSHIRE PCT     |
|                   |     |                                              | 5PD                                     | NORTHAMPTONSHIRE TEACHING PCT         | 5LV                                  | NORTHAMPTONSHIRE HEARTLANDS PCT             |
|                   |     |                                              |                                         |                                       | 5LW                                  | NORTHAMPTON PCT                             |

4 Northamptonshire part became part of Northamptonshire Teaching PCT while the Oxfordshire part became part of Oxfordshire PCT

5 Lincolnshire PCT reports to East Midlands SHA but part of the PCT falls within Yorkshire and the Humber SHA

| New SHA           | Old SHA                              | New PCO                              | Old PCO                                   |
|-------------------|--------------------------------------|--------------------------------------|-------------------------------------------|
|                   |                                      | 5M2 SHROPSHIRE COUNTY PCT            | 5M2 SHROPSHIRE COUNTY PCT                 |
|                   |                                      | 5MK TELFORD AND WREKIN PCT           | 5MK TELFORD AND WREKIN PCT                |
|                   |                                      | 5PH NORTH STAFFORDSHIRE PCT          | 5HR STAFFORDSHIRE MOORLANDS PCT           |
|                   |                                      | SFILLOR TH STAFLORDSHILL FOL         | 5HW NEWCASTLE-UNDER-LYME PCT              |
|                   | Q26 SHROPSHIRE AND STAFFORDSHIRE     | 5PJ STOKE ON TRENT PCT               | 5ME NORTH STOKE PCT                       |
|                   | Q20 SHROFSHIKE AND STAFFORDSHIKE     | SFJ STORE ON TRENT FCT               | 5MF SOUTH STOKE PCT                       |
|                   |                                      |                                      | 5DQ BURNTWOOD, LICHFIELD AND TAMWORTH PCT |
|                   |                                      | 5PK SOUTH STAFFORDSHIRE PCT          | 5ML EAST STAFFORDSHIRE PCT                |
|                   |                                      | SFR SOUTH STAFFORDSHIRE FCT          | 5MM CANNOCK CHASE PCT                     |
|                   |                                      |                                      | 5MN SOUTH WESTERN STAFFORDSHIRE PCT       |
|                   |                                      | 5M1 SOUTH BIRMINGHAM PCT             | 5M1 SOUTH BIRMINGHAM PCT                  |
|                   |                                      | 5M3 WALSALL TEACHING PCT             | 5M3 WALSALL TEACHING PCT                  |
|                   |                                      | 5MV WOLVERHAMPTON CITY PCT           | 5MV WOLVERHAMPTON CITY PCT                |
|                   |                                      | 5MX HEART OF BIRMINGHAM TEACHING PCT | 5MX HEART OF BIRMINGHAM TEACHING PCT      |
| Q34 WEST MIDLANDS |                                      | 5PE DUDLEY PCT                       | 5HT DUDLEY SOUTH PCT                      |
| Q34 WEST MIDEANDS | Q27 BIRMINGHAM AND THE BLACK COUNTRY | SFL DODLET FOT                       | 5HV DUDLEY BEACON AND CASTLE PCT          |
|                   | Q27 BIRMINGHAW AND THE BEACK COUNTRY |                                      | 5MG OLDBURY AND SMETHWICK PCT             |
|                   |                                      | 5PF SANDWELL PCT                     | 5MH ROWLEY REGIS & TIPTON PCT             |
|                   |                                      |                                      | 5MJ WEDNESBURY AND WEST BROMWICH PCT      |
|                   |                                      | 5PG BIRMINGHAM EAST AND NORTH PCT    | 5MW NORTH BIRMINGHAM PCT                  |
|                   |                                      | 3FG BIRMINGHAM EAST AND NORTH FCT    | 5MY EASTERN BIRMINGHAM PCT                |
|                   |                                      | TAM SOLIHULL CARE TRUST              | 5D1 SOLIHULL PCT                          |
|                   |                                      | 5CN HEREFORDSHIRE PCT                | 5CN HEREFORDSHIRE PCT                     |
|                   |                                      | 5MD COVENTRY TEACHING PCT            | 5MD COVENTRY TEACHING PCT                 |
|                   |                                      |                                      | 5DR WYRE FOREST PCT                       |
|                   | Q28 WEST MIDLANDS SOUTH              | 5PL WORCESTERSHIRE PCT               | 5MR REDDITCH AND BROMSGROVE PCT           |
|                   |                                      |                                      | 5MT SOUTH WORCESTERSHIRE PCT              |
|                   |                                      |                                      | 5M9 RUGBY PCT                             |
|                   |                                      | 5PM WARWICKSHIRE PCT                 | 5MP NORTH WARWICKSHIRE PCT                |
|                   |                                      |                                      | 5MQ SOUTH WARWICKSHIRE PCT                |

| New SHA             |     | Old SHA                             |                                           | New PCO                                             | Old PCO                                     |
|---------------------|-----|-------------------------------------|-------------------------------------------|-----------------------------------------------------|---------------------------------------------|
|                     |     |                                     | 5 DN                                      | PETERBOROUGH PCT                                    | 5AF NORTH PETERBOROUGH PCT                  |
|                     |     |                                     | 5PN                                       | PETERBOROUGH PCT                                    | 5AG SOUTH PETERBOROUGH PCT                  |
|                     |     |                                     |                                           |                                                     | 5GF HUNTINGDONSHIRE PCT                     |
|                     |     |                                     |                                           |                                                     | 5JH CAMBRIDGE CITY PCT                      |
|                     |     |                                     | 588                                       | 5PP CAMBRIDGESHIRE PCT                              | 5JJ SOUTH CAMBRIDGESHIRE PCT                |
|                     |     |                                     |                                           |                                                     | 5JK EAST CAMBRIDGESHIRE AND FENLAND PCT     |
|                     |     |                                     |                                           |                                                     | 5A2 NORWICH PCT                             |
|                     |     |                                     |                                           | 5CY WEST NORFOLK PCT                                |                                             |
|                     | Q01 | NORFOLK, SUFFOLK AND CAMBRIDGESHIRE | 5PQ                                       | NORFOLK PCT                                         | 5G1 SOUTHERN NORFOLK PCT                    |
|                     |     |                                     |                                           |                                                     | 5JL BROADLAND PCT                           |
|                     |     |                                     |                                           |                                                     | 5JM NORTH NORFOLK PCT                       |
|                     |     |                                     |                                           | 5GT GREAT YARMOUTH PCT                              |                                             |
|                     |     |                                     | 5PR                                       | GREAT YARMOUTH AND WAVENEY PCT                      | 5JV WAVENEY PCT                             |
|                     |     |                                     |                                           |                                                     | 5JQ IPSWICH PCT                             |
|                     |     |                                     |                                           |                                                     | 5JR SUFFOLK COASTAL PCT                     |
|                     |     |                                     | 5PT                                       | SUFFOLK PCT                                         | 5JT CENTRAL SUFFOLK PCT                     |
|                     |     |                                     |                                           |                                                     | 5JW SUFFOLK WEST PCT                        |
|                     |     |                                     | 5GC                                       | LUTON PCT                                           | 5GC LUTON PCT                               |
|                     |     |                                     |                                           |                                                     | 5GD BEDFORD PCT                             |
|                     |     |                                     | 5P2                                       | 5P2 BEDFORDSHIRE PCT                                | 5GE BEDFORDSHIRE HEARTLANDS PCT             |
| Q35 EAST OF ENGLAND |     |                                     |                                           |                                                     | 5GG WELWYN HATFIELD PCT                     |
|                     |     |                                     |                                           |                                                     | 5GH NORTH HERTFORDSHIRE AND STEVENAGE PCT   |
|                     | 002 | BEDFORDSHIRE AND HERTFORDSHIRE      | HIRE 5P3 EAST AND NORTH HERTFORDSHIRE PCT | EAST AND NORTH HERTFORDSHIRE PCT                    | 5GJ SOUTH EAST HERTFORDSHIRE PCT            |
|                     |     |                                     |                                           | 5GK ROYSTON, BUNTINGFORD AND BISHOP'S STORTFORD PCT |                                             |
|                     |     |                                     |                                           |                                                     | 5CP HERTSMERE PCT                           |
|                     |     |                                     |                                           |                                                     | 5GV WATFORD AND THREE RIVERS PCT            |
|                     |     |                                     | 5P4                                       | WEST HERTFORDSHIRE PCT                              | 5GW DACORUM PCT                             |
|                     |     |                                     |                                           |                                                     | 5GX ST ALBANS AND HARPENDEN PCT             |
|                     |     |                                     |                                           |                                                     | 5AK SOUTHEND ON SEA PCT                     |
|                     |     |                                     | 5P1                                       | SOUTH EAST ESSEX PCT                                | 5JP CASTLE POINT AND ROCHFORD PCT           |
|                     |     |                                     |                                           |                                                     | 5AJ EPPING FOREST PCT                       |
|                     |     |                                     | 5PV                                       | WEST ESSEX PCT                                      | 5DC HARLOW PCT                              |
|                     |     |                                     | 0. 1                                      |                                                     | 5GN UTTLESFORD PCT                          |
|                     |     |                                     |                                           |                                                     | 5AH TENDRING PCT                            |
|                     | 003 | BESSEX                              | 5PW                                       | NORTH EAST ESSEX PCT                                | 5GM COLCHESTER PCT                          |
|                     | 000 |                                     |                                           |                                                     | 5GL MALDON AND SOUTH CHELMSFORD PCT         |
|                     |     |                                     | 5DV                                       | MID ESSEX PCT                                       | 5JN CHELMSFORD PCT                          |
|                     |     |                                     | 582                                       |                                                     | TAG WITHAM, BRAINTREE & HALSTEAD CARE TRUST |
|                     |     |                                     |                                           |                                                     |                                             |
|                     |     |                                     |                                           |                                                     | 5GP BILLERICAY, BRENTWOOD AND WICKFORD PCT  |
| 1                   |     |                                     | 5PY                                       | SOUTH WEST ESSEX PCT                                | 5GQ THURROCK PCT                            |
|                     |     |                                     |                                           |                                                     | 5GR BASILDON PCT                            |

| New SHA    | Old SHA                  | New PCO                           | Old PCO                           |
|------------|--------------------------|-----------------------------------|-----------------------------------|
|            |                          | 5AT HILLINGDON PCT                | 5AT HILLINGDON PCT                |
|            |                          | 5H1 HAMMERSMITH AND FULHAM PCT    | 5H1 HAMMERSMITH AND FULHAM PCT    |
|            |                          | 5HX EALING PCT                    | 5HX EALING PCT                    |
|            | Q04 NORTH WEST LONDON    | 5HY HOUNSLOW PCT                  | 5HY HOUNSLOW PCT                  |
|            | Q04 NORTH WEST LONDON    | 5K5 BRENT TEACHING PCT            | 5K5 BRENT TEACHING PCT            |
|            |                          | 5K6 HARROW PCT                    | 5K6 HARROW PCT                    |
|            |                          | 5LA KENSINGTON AND CHELSEA PCT    | 5LA KENSINGTON AND CHELSEA PCT    |
|            |                          | 5LC WESTMINSTER PCT               | 5LC WESTMINSTER PCT               |
|            |                          | 5A9 BARNET PCT                    | 5A9 BARNET PCT                    |
|            |                          | 5C1 ENFIELD PCT                   | 5C1 ENFIELD PCT                   |
|            | Q05 NORTH CENTRAL LONDON | 5C9 HARINGEY TEACHING PCT         | 5C9 HARINGEY TEACHING PCT         |
|            |                          | 5K7 CAMDEN PCT                    | 5K7 CAMDEN PCT                    |
|            |                          | 5K8 ISLINGTON PCT                 | 5K8 ISLINGTON PCT                 |
|            |                          | 5A4 HAVERING PCT                  | 5A4 HAVERING PCT                  |
|            |                          | 5C2 BARKING AND DAGENHAM PCT      | 5C2 BARKING AND DAGENHAM PCT      |
| Q36 LONDON |                          | 5C3 CITY AND HACKNEY TEACHING PCT | 5C3 CITY AND HACKNEY TEACHING PCT |
|            | Q06 NORTH EAST LONDON    | 5C4 TOWER HAMLETS PCT             | 5C4 TOWER HAMLETS PCT             |
|            |                          | 5C5 NEWHAM PCT                    | 5C5 NEWHAM PCT                    |
|            |                          | 5NA REDBRIDGE PCT                 | 5NA REDBRIDGE PCT 6               |
|            |                          | 5NC WALTHAM FOREST PCT            | 5NC WALTHAM FOREST PCT 7          |
|            |                          | 5A7 BROMLEY PCT                   | 5A7 BROMLEY PCT                   |
|            |                          | 5A8 GREENWICH TEACHING PCT        | 5A8 GREENWICH TEACHING PCT        |
|            | Q07 SOUTH EAST LONDON    | 5LD LAMBETH PCT                   | 5LD LAMBETH PCT                   |
|            |                          | 5LE SOUTHWARK PCT                 | 5LE SOUTHWARK PCT                 |
|            |                          | 5LF LEWISHAM PCT                  | 5LF LEWISHAM PCT                  |
|            |                          | TAK BEXLEY CARE TRUST             | TAK BEXLEY CARE TRUST 8           |
|            |                          | 5A5 KINGSTON PCT                  | 5A5 KINGSTON PCT                  |
|            |                          | 5K9 CROYDON PCT                   | 5K9 CROYDON PCT                   |
|            | Q08 SOUTH WEST LONDON    | 5LG WANDSWORTH PCT                | 5LG WANDSWORTH PCT                |
|            |                          | 5M6 RICHMOND AND TWICKENHAM PCT   | 5M6 RICHMOND AND TWICKENHAM PCT   |
|            |                          | 5M7 SUTTON AND MERTON PCT         | 5M7 SUTTON AND MERTON PCT         |

6 Formed on 01/04/2003 from Redbridge PCT and part of Chingford, Wanstead and Woodford PCT

7 Formed on 01/04/2003 from Walthamstow, Leyton and Leytonstone PCT and part of Chingford, Wanstead and Woodford PCT

8 Formed on 01/10/2003 from Bexley PCT

| New SHA              |     | Old SHA           | New PCO                              | Old PCO                                 |
|----------------------|-----|-------------------|--------------------------------------|-----------------------------------------|
|                      |     |                   | 5L3 MEDWAY PCT                       | 5L3 MEDWAY PCT                          |
|                      |     |                   | 5P9 WEST KENT PCT                    | 5CM DARTFORD, GRAVESHAM AND SWANLEY PCT |
|                      |     |                   |                                      | 5FF SOUTH WEST KENT PCT                 |
|                      |     |                   |                                      | 5L2 MAIDSTONE WEALD PCT                 |
|                      | Q18 | KENT AND MEDWAY   |                                      | 5L4 SWALE PCT                           |
|                      |     |                   |                                      | 5LL ASHFORD PCT                         |
|                      |     |                   | 5QA EASTERN AND COASTAL KENT PCT     | 5LM CANTERBURY AND COASTAL PCT          |
|                      |     |                   |                                      | 5LN EAST KENT COASTAL PCT               |
|                      |     |                   |                                      | 5LP SHEPWAY PCT                         |
|                      |     |                   | 5LQ BRIGHTON AND HOVE CITY PCT       | 5LQ BRIGHTON AND HOVE CITY PCT          |
|                      |     |                   |                                      | 5KP EAST ELMBRIDGE AND MID SURREY PCT   |
| Q37 SOUTH EAST COAST |     |                   |                                      | 5KQ EAST SURREY PCT                     |
| Q37 GOOTTEACT COAST  |     |                   | 5P5 SURREY PCT                       | 5L5 GUILDFORD AND WAVERLEY PCT          |
|                      |     |                   |                                      | 5L6 NORTH SURREY PCT                    |
|                      |     |                   |                                      | 5L7 SURREY HEATH AND WOKING PCT         |
|                      |     |                   |                                      | 5FK MID-SUSSEX PCT                      |
|                      | Q19 | SURREY AND SUSSEX |                                      | 5L8 ADUR, ARUN AND WORTHING PCT         |
|                      |     |                   | 5P6 WEST SUSSEX PCT                  | 5L9 WESTERN SUSSEX PCT                  |
|                      |     |                   |                                      | 5MA CRAWLEY PCT                         |
|                      |     |                   |                                      | 5MC HORSHAM AND CHANCTONBURY PCT        |
|                      |     |                   | 5P7 EAST SUSSEX DOWNS AND WEALD PCT  | 5LR EASTBOURNE DOWNS PCT                |
|                      |     |                   | JFT LAST SUSSEX DOWING AND WEALD FOT | 5LT SUSSEX DOWNS AND WEALD PCT          |
|                      |     |                   | 5P8 HASTINGS AND ROTHER PCT          | 5FH BEXHILL AND ROTHER PCT              |
|                      |     |                   | SFOLLASTINGS AND ROTHER POL          | 5FJ HASTINGS AND ST LEONARDS PCT        |

| New SHA           | Old SHA                         | New PCO                          | Old PCO                                 |
|-------------------|---------------------------------|----------------------------------|-----------------------------------------|
|                   |                                 | 5CQ MILTON KEYNES PCT            | 5CQ MILTON KEYNES PCT                   |
|                   |                                 |                                  | 5DP VALE OF AYLESBURY PCT               |
|                   |                                 | 5QD BUCKINGHAMSHIRE PCT          | 5G4 CHILTERN AND SOUTH BUCKS PCT        |
|                   |                                 |                                  | 5G5 WYCOMBE PCT                         |
|                   |                                 |                                  | 5DT NORTH EAST OXFORDSHIRE PCT          |
|                   |                                 |                                  | 5DV CHERWELL VALE PCT 9                 |
|                   |                                 | 5QE OXFORDSHIRE PCT              | 5DW OXFORD CITY PCT                     |
|                   | Q16 THAMES VALLEY               |                                  | 5DX SOUTH EAST OXFORDSHIRE PCT          |
|                   |                                 |                                  | 5DY SOUTH WEST OXFORDSHIRE PCT          |
|                   |                                 |                                  | 5DK NEWBURY AND COMMUNITY PCT           |
|                   |                                 | 5QF BERKSHIRE WEST PCT           | 5DL READING PCT                         |
|                   |                                 |                                  | 5DN WOKINGHAM PCT                       |
| Q38 SOUTH CENTRAL |                                 | 5QG BERKSHIRE EAST PCT 10        | 5DM SLOUGH PCT                          |
|                   |                                 |                                  | 5G2 BRACKNELL FOREST PCT                |
|                   |                                 |                                  | 5G3 WINDSOR, ASCOT AND MAIDENHEAD PCT   |
|                   |                                 | 5FE PORTSMOUTH CITY TEACHING PCT | 5FE PORTSMOUTH CITY TEACHING PCT        |
|                   |                                 | 5L1 SOUTHAMPTON CITY PCT         | 5L1 SOUTHAMPTON CITY PCT                |
|                   |                                 |                                  | 5A1 NEW FOREST PCT                      |
|                   |                                 |                                  | 5DF NORTH HAMPSHIRE PCT                 |
|                   |                                 |                                  | 5E9 MID-HAMPSHIRE PCT                   |
|                   | Q17 HAMPSHIRE AND ISLE OF WIGHT | 5QC HAMPSHIRE PCT                | 5FD EAST HAMPSHIRE PCT                  |
|                   |                                 |                                  | 5G6 BLACKWATER VALLEY AND HART PCT      |
|                   |                                 |                                  | 5LX FAREHAM AND GOSPORT PCT             |
|                   |                                 |                                  | 5LY EASTLEIGH AND TEST VALLEY SOUTH PCT |
|                   |                                 | 5QT ISLE OF WIGHT NHS PCT        | 5DG ISLE OF WIGHT PCT                   |
|                   |                                 |                                  | RR2 ISLE OF WIGHT HEALTHCARE NHS TRUST  |

9 Northamptonshire part became part of Northamptonshire Teaching PCT while the Oxfordshire part became part of Oxfordshire PCT

10 Berkshire East PCT reports to South Central SHA but part of the PCT falls within South East Coast SHA

| New SHA         | Old SHA                                 | New PCO                              | Old PCO                              |
|-----------------|-----------------------------------------|--------------------------------------|--------------------------------------|
|                 |                                         | 5A3 SOUTH GLOUCESTERSHIRE PCT        | 5A3 SOUTH GLOUCESTERSHIRE PCT        |
|                 |                                         | 5FL BATH AND NORTH EAST SOMERSET PCT | 5FL BATH AND NORTH EAST SOMERSET PCT |
|                 |                                         | 5K3 SWINDON PCT                      | 5K3 SWINDON PCT 11                   |
|                 |                                         | 5M8 NORTH SOMERSET PCT               | 5M8 NORTH SOMERSET PCT               |
|                 |                                         |                                      | 5KW CHELTENHAM AND TEWKESBURY PCT    |
|                 | Q20 AVON, GLOUCESTERSHIRE AND WILTSHIRE | 5QH GLOUCESTERSHIRE PCT              | 5KX WEST GLOUCESTERSHIRE PCT         |
|                 | Q20 AVON, GEODEESTERSTINE AND WIETSTINE |                                      | 5KY COTSWOLD AND VALE PCT            |
|                 |                                         | 5QJ BRISTOL PCT                      | 5JF BRISTOL NORTH PCT                |
|                 |                                         | SQJ BRISTOL POT                      | 5JG BRISTOL SOUTH AND WEST PCT       |
|                 |                                         |                                      | 5DH WEST WILTSHIRE PCT               |
|                 |                                         | 5QK WILTSHIRE PCT                    | 5DJ SOUTH WILTSHIRE PCT              |
|                 |                                         |                                      | 5K4 KENNET AND NORTH WILTSHIRE PCT   |
|                 |                                         | 5F1 PLYMOUTH TEACHING PCT            | 5F1 PLYMOUTH TEACHING PCT            |
|                 |                                         |                                      | 5FM WEST OF CORNWALL PCT             |
|                 |                                         | 5QP CORNWALL AND ISLES OF SCILLY PCT | 5KR NORTH AND EAST CORNWALL PCT      |
| Q39 SOUTH WEST  |                                         |                                      | 5KT CENTRAL CORNWALL PCT             |
| 039 300111 WEST |                                         |                                      | 5CV SOUTH HAMS AND WEST DEVON PCT    |
|                 | Q21 SOUTH WEST PENINSULA                |                                      | 5FQ NORTH DEVON PCT                  |
|                 |                                         | 5QQ DEVON PCT                        | 5FR EXETER PCT                       |
|                 |                                         | JOG DEVON FOT                        | 5FT EAST DEVON PCT                   |
|                 |                                         |                                      | 5FV MID DEVON PCT                    |
|                 |                                         |                                      | 5FY TEIGNBRIDGE PCT                  |
|                 |                                         | TAL TORBAY CARE TRUST                | TAL TORBAY CARE TRUST <sup>12</sup>  |
|                 |                                         |                                      | 5FW SOMERSET COAST PCT               |
|                 |                                         | 5QL SOMERSET PCT                     | 5FX MENDIP PCT                       |
|                 |                                         | JQE SOMERSET FOT                     | 5K1 SOUTH SOMERSET PCT               |
|                 |                                         |                                      | 5K2 TAUNTON DEANE PCT                |
|                 | Q22 DORSET AND SOMERSET                 |                                      | 5CD NORTH DORSET PCT                 |
|                 |                                         | 5QM DORSET PCT                       | 5FN SOUTH AND EAST DORSET PCT        |
|                 |                                         |                                      | 5FP SOUTH WEST DORSET PCT            |
|                 |                                         | 5QN BOURNEMOUTH AND POOLE PCT        | 5CE BOURNEMOUTH TEACHING PCT         |
|                 |                                         | JOIN BOOKINEWOUTH AND FOOLE FOT      | 5KV POOLE PCT                        |

11 Swindon PCT reports to South West SHA but part of the PCT falls within South Central SHA

12 Formed on 01/10/2005 from Torbay PCT

## APPENDIX P GLOSSARY

The following abbreviations / terms are used within the text of this report: A&E Accident and Emergency Department Adult Intensive Care AIC AICU Adult Intensive Care Unit ANZPICS Australian and New Zealand Paediatric Intensive Care Registry CAG Clinical Advisory Group CATS Children's Acute Transfer Service **Clinical Terms 3** CT3 **ECMO** Extra corporeal membrane oxygenation **ENB English National Board** GB Great Britain Great Ormond Street Hospital GOSH HB Health Board IC Information Centre for health and social care **ICNARC** Intensive Care National Audit & Research Centre **ICP** device Intracranial pressure device Invasive ventilation Any method of ventilation delivered via an endotracheal tube, laryngeal mask or tracheotomy tube IQR Interguartile Range IV vasoactive therapy Intravenous drug therapy to support blood pressure and heart rate Left ventricular assist device to support cardiac function LVAD NPfIT National Programme for Information Technology NSPD National Statistics Postcode Directory NHS National Health Service NHSIA National Health Service Information Authority NHSnet A secure wide area network connecting NHS organisations which enables units to transfer data electronically to PICANet Non-invasive ventilation Any method of ventilation NOT given via an endotracheal tube, laryngeal mask or tracheostomy tube PbR Payment by Results PCCEWG Paediatric Critical Care Expert Working Group Paediatric Critical Care Minimum Dataset PCCMDS PCO **Primary Care Organisations** PIAG Patient Information Advisory Group PIC Paediatric Intensive Care Paediatric Intensive Care Audit Network PICANet PICNET Paediatric Intensive Care Network

PICS Paediatric Intensive Care Society

| PICS SG          | Paediatric Intensive Care Society Study Group                                                                                                                                                                                                                                                                 |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PICU             | Paediatric Intensive Care Unit                                                                                                                                                                                                                                                                                |
| PIM              | Paediatric Index of Mortality                                                                                                                                                                                                                                                                                 |
| PIM 2            | Paediatric Index of Mortality version 2                                                                                                                                                                                                                                                                       |
| READ Codes       | Clinical terminology used to describe clinical conditions, symptoms and observations                                                                                                                                                                                                                          |
| RSV              | Respiratory syncytial virus                                                                                                                                                                                                                                                                                   |
| SCT              | See SNOMED CT®                                                                                                                                                                                                                                                                                                |
| SHO              | Senior House Officer                                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                               |
| SG               | Steering Group                                                                                                                                                                                                                                                                                                |
| SG<br>SNOMED CT® | Steering Group<br>SNOMED CT® is a clinical terminology - the Systematised<br>Nomenclature of Medicine. It is a common computerised<br>language that will be used by all computers in the NHS to<br>facilitate communications between healthcare professionals in<br>clear and unambiguous terms               |
|                  | SNOMED CT® is a clinical terminology - the Systematised<br>Nomenclature of Medicine. It is a common computerised<br>language that will be used by all computers in the NHS to<br>facilitate communications between healthcare professionals in                                                                |
| SNOMED CT®       | SNOMED CT® is a clinical terminology - the Systematised<br>Nomenclature of Medicine. It is a common computerised<br>language that will be used by all computers in the NHS to<br>facilitate communications between healthcare professionals in<br>clear and unambiguous terms                                 |
| SNOMED CT®       | SNOMED CT® is a clinical terminology - the Systematised<br>Nomenclature of Medicine. It is a common computerised<br>language that will be used by all computers in the NHS to<br>facilitate communications between healthcare professionals in<br>clear and unambiguous terms<br>Standardised mortality ratio |



## www.picanet.org.uk picanet@leeds.ac.uk

## **University of Leeds**

University of Leicester

Patricia McKinney Roger Parslow Thomas Fleming Angie Willshaw

PICANet Paediatric Epidemiology Group Centre for Epidemiology & Biostatistics The Leeds Institute of Genetics, Health and Therapeutics University of Leeds 30 Hyde Terrace Leeds LS2 9LN

r.c.parslow@leeds.ac.uk 0113 343 4856 Elizabeth Draper Caroline Lamming

PICANet Department of Health Sciences University of Leicester 22-28 Princess Road West Leicester LE1 6TP

crl4@le.ac.uk 0116 252 5414 Pan Thames Co-ordinator

Krish Thiru

PICANet Cardiorespiratory & Critical Care Division Room 8086, Level 8 – Nurses Home Great Ormond Street Hospital for Children Great Ormond Street London WC1N 3JH

thiruk1@gosh.nhs.uk 020 7762 6713



